【題目】在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),在以原點為極點, 軸正半軸為極軸的極坐標系中,直線的極坐標方程為.
(1)求曲線的普通方程和直線的傾斜角;
(2)設(shè)點,直線和曲線交于兩點,求的值.
【答案】(1);(2)
【解析】試題分析:(1)由消去參數(shù),得,由,得,化為普通方程即可得斜率求傾斜角(2)由(1)知,點在直線上,可設(shè)直線的參數(shù)方程為 (為參數(shù)),
即 (為參數(shù)),而 ,聯(lián)立方程求解
試題解析:
(1)由消去參數(shù),得,
即曲線的普通方程為
由,得,(*)
將代入(*),化簡得,
所以直線的傾斜角為
(2)由(1)知,點在直線上,可設(shè)直線的參數(shù)方程為 (為參數(shù)),
即 (為參數(shù)),
代入并化簡,得, ,
設(shè)、兩點對應的參數(shù)分別為、,
則, , ,
所以
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中, 底面,底面是直角梯形, , , , 是的中點.
(1)求證:平面平面;
(2)若二面角的余弦值為,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知向量 , ,且 ,f(x)= ﹣2λ| |(λ為常數(shù)),求:
(1) 及| |;
(2)若f(x)的最小值是 ,求實數(shù)λ的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】電視傳媒公司為了解某地區(qū)電視觀眾對某類體育節(jié)目的收視情況,隨機抽取了100名觀眾進行調(diào)查.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方圖:
將日均收看該體育節(jié)目時間不低于40分鐘的觀眾稱為“體育迷”.
(1)根據(jù)已知條件完成上面的列聯(lián)表,若按的可靠性要求,并據(jù)此資料,你是否認為“體育迷”與性別有關(guān)?
(2)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量電視觀眾中,采用隨機抽樣方法每次抽取1名觀眾,抽取3次,記被抽取的3名觀眾中的“體育迷”人數(shù)為.若每次抽取的結(jié)果是相互獨立的,求分布列,期望和方差.
附:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若存在實數(shù)和,使得函數(shù)和對定義域內(nèi)的任意均滿足:,且存在使得,存在使得,則稱直線為函數(shù)和的“分界線”.在下列說法中正確的是__________(寫出所有正確命題的編號).
①任意兩個一次函數(shù)最多存在一條“分界線”;
②“分界線”存在的兩個函數(shù)的圖象最多只有兩個交點;
③與的“分界線”是;
④與的“分界線”是或.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在三棱柱中,側(cè)面為矩形, , , 是的中點, 與交于點,且平面.
(Ⅰ)證明:平面平面;
(Ⅱ)若, 的重心為,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=a(2cos2 +sinx)+b
(1)若a=﹣1,求f(x)的單調(diào)增區(qū)間;
(2)若x∈[0,π]時,f(x)的值域是[5,8],求a,b的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com