已知圓O:軸于AB兩點,曲線C是以為長軸,離心率為的橢圓,其左焦點為F.若P是圓O上一點連結(jié)PF,過原點O作直線PF的垂線交橢圓C的左準線于點Q

(1)求橢圓C的標準方程;
(2)若點P的坐標為(1,1),求證:直線PQ與圓相切;
(3)試探究:當點P在圓O上運動時(不與A、B重合),直線PQ與圓O是否保持相切的位置關(guān)系?若是,請證明;若不是,請說明理由.

解:(1)橢圓的標準方程為
(2)因為(1,1),所以,所以,所以直線OQ的方程為y=-2x
又橢圓的左準線方程為x=-2,所以點Q(,4)
所以,又,所以,即,故直線與圓相切
(3)當點在圓上運動時,直線與圓保持相切          

解析

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的中點在原點且過點,焦點在坐標軸上,長軸長是短軸長的3倍,求該橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)如圖,橢圓的離心率為,直線所圍成的矩形ABCD的面積為8.
 
(Ⅰ)求橢圓M的標準方程;
(Ⅱ) 設(shè)直線與橢圓M有兩個不同的交點與矩形ABCD有兩個不同的交點.求的最大值及取得最大值時m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的離心率,A,B分別為橢圓的長軸和短軸的端點,M為AB的中點,O為坐標原點,且.
(1)求橢圓的方程;
(2)過(-1,0)的直線交橢圓于P,Q兩點,求△POQ面積最大時直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分) 已知圓過橢圓的兩焦點,與橢圓有且僅有兩個公共點;直線與圓相切 ,與橢圓相交于兩點記
(1)求橢圓的方程;
(2)求的取值范圍;
(3)求的面積S的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分) 求滿足下列條件的橢圓的標準方程.
(1)焦點在坐標軸上,且經(jīng)過兩點
(2)經(jīng)過點(2,-3)且與橢圓具有共同的焦點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(13分)已知拋物線D的頂點是橢圓的中心,焦點與該橢圓的右焦點重合。
(1)求拋物線D的方程;
(2)已知動直線l過點P(4,0),交拋物線D于A,B兩點
(i)若直線l的斜率為1,求AB的長;
(ii)是否存在垂直于x軸的直線m被以AP為直徑的圓M所截得的弦長恒為定值?如果存在,求出m的方程,如果不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知圓O:,點O為坐標原點,一條直線與圓O相切并與橢圓交于不同的兩點A、B
(1)設(shè),求的表達式;
(2)若,求直線的方程;
(3)若,求三角形OAB面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

若拋物線的頂點在原點,其準線方程過雙曲線-=1(,)的一個焦點,如果拋物線與雙曲線交于(,),(,-),求兩曲線的標準方程.

查看答案和解析>>

同步練習冊答案