20.已知集合M={x|x2+x-2<0},N={x|x+1<0},則M∩N=( 。
A.(-1,1)B.(-2,-1)C.(-2,1)D.(1,2)

分析 運(yùn)用二次不等式和一次不等式的解法,化簡(jiǎn)集合M,N,再由交集的定義,即可得到所求.

解答 解:集合M={x|x2+x-2<0}={x|(x+2)(x-1)<0}={x|-2<x<1},
N={x|x+1<0}={x|x<-1},
可得M∩N={x|-2<x<-1},
故選:B.

點(diǎn)評(píng) 本題考查集合的運(yùn)算,主要是交集的求法,注意運(yùn)用定義法,同時(shí)考查二次不等式和一次不等式的解法,以及運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}x=1+tcosα\\ y=tsinα\end{array}\right.$(t為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ=2.
(Ⅰ)證明:不論t為何值,直線l與曲線C恒有兩個(gè)公共點(diǎn);
(Ⅱ)以α為參數(shù),求直線l與曲線C相交所得弦AB的中點(diǎn)軌跡的參數(shù)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)=($\frac{1}{3}$x3-x2+$\frac{2}{3}$)cos2017($\frac{π}{3}x$+$\frac{2π}{3}$)+2x+3在[-2015,2017]上的最大值為M,最小值為m,則M+m=(  )
A.5B.10C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,李先生家住H小區(qū),他工作在C處科技園區(qū),從家開車到公司上班路上有L1、L2兩條路線,L1路線上有A1、A2、A3三個(gè)路口,各路口遇到紅燈的概率均為$\frac{1}{2}$;L2路線上有B1、B2兩個(gè)路口,各路口遇到紅燈的概率依次為$\frac{3}{4}$,$\frac{3}{5}$.
(1)若走L2路線,求遇到紅燈次數(shù)X的分布列和數(shù)學(xué)期望;
(2)按照“平均遇到紅燈次數(shù)最少”的要求,請(qǐng)你幫助李先生從上述兩條路線中選擇一條最好的上班路線,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知a>0,函數(shù)f(x)=ln(x-1)-a(x-2),g(x)=ex+(a2-2)x
(1)求f(x)在區(qū)間[2,3]上的最小值;
(2)設(shè)h(x)=af(x+2)+g(x),當(dāng)x≥0時(shí),h(x)≥-1恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某市對(duì)創(chuàng)“市級(jí)示范性學(xué)校”的甲、乙兩所學(xué)校進(jìn)行復(fù)查驗(yàn)收,對(duì)辦學(xué)的社會(huì)滿意度一項(xiàng)評(píng)價(jià)隨機(jī)訪問了20位市民,這20位市民對(duì)這兩所學(xué)校的評(píng)分(評(píng)分越高表明市民的評(píng)價(jià)越好)的數(shù)據(jù)如下:
甲校:58,66,71,58,67,72,82,92,83,86,67,59,86,72,78,59,68,69,73,81;
乙校:90,80,73,65,67,69,81,85,82,88,89,86,86,78,98,95,96,91,76,69,.
檢查組將成績(jī)分成了四個(gè)等級(jí):成績(jī)?cè)趨^(qū)間[85,100]的為A等,在區(qū)間[70,85)的為B等,在區(qū)間[60,70)的為C等,在區(qū)間[0,60)為D等.
(1)請(qǐng)用莖葉圖表示上面的數(shù)據(jù),并通過觀察莖葉圖,對(duì)兩所學(xué)校辦學(xué)的社會(huì)滿意度進(jìn)行比較,寫出兩個(gè)統(tǒng)計(jì)結(jié)論;
(2)估計(jì)哪所學(xué)校的市民的評(píng)分等級(jí)為A級(jí)或B級(jí)的概率大,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.直線$\left\{\begin{array}{l}x=tcosα\\ y=tsinα\end{array}\right.(t$為參數(shù))與圓$\left\{\begin{array}{l}x=4+2cosφ\(chéng)\ y=2sinφ\(chéng)end{array}\right.(φ$為參數(shù))相切,則此直線的傾斜角$α({α>\frac{π}{2}})$等于( 。
A.$\frac{5π}{6}$B.$\frac{3π}{4}$C.$\frac{2π}{3}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知定義在R上的增函數(shù)y=f(x)滿足f(x)+f(4-x)=0,若實(shí)數(shù)a、b滿足不等式f(a)+f(b)≥0,則a2+b2的最小值是8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.二元線性方程組$\left\{\begin{array}{l}{x+5y=0}\\{2x+3y=4}\end{array}\right.$的系數(shù)矩陣D=(  )
A.$(\begin{array}{l}{0}&{5}\\{3}&{4}\end{array})$B.$(\begin{array}{l}{1}&{0}\\{2}&{3}\end{array})$C.$(\begin{array}{l}{1}&{5}\\{2}&{3}\end{array})$D.$(\begin{array}{l}{1}&{0}\\{2}&{4}\end{array})$

查看答案和解析>>

同步練習(xí)冊(cè)答案