在正項(xiàng)等比數(shù)列{an}中,a3a7=4,則數(shù)列{log2an}的前9項(xiàng)之和為 .
【答案】分析:先根據(jù)等比數(shù)列的性質(zhì)得到a3a7=a1a9=a2a8=a4a6=a52=4,可求出a5的值,然后根據(jù)對數(shù)的運(yùn)算性質(zhì)可知log2a1+log2a2+log2a3+log2a4+log2a5+log2a6+log2a7+log2a8+log2a9=log2(a1a2…a9),然后將數(shù)值代入即可得到答案.
解答:解:∵{an}是正項(xiàng)等比數(shù)列,∴a3a7=a1a9=a2a8=a4a6=a52=4
∴a5=2
S9=log2a1+log2a2+log2a3+log2a4+log2a5+log2a6+log2a7+log2a8+log2a9=log2(a1a2…a9)
=log2[(a3a7)(a1a9)(a2a8)(a4a6)(a5)]=log2(44×2)=log229=9
故答案為9
點(diǎn)評:本題主要考查了等比數(shù)列的性質(zhì).若 m、n、p、q∈N*,且m+n=p+q,則aman=apaq.