(本小題滿分14分)

已知二次函數(shù)為常數(shù));.若直線1、2與函數(shù)f(x)的圖象以及1,y軸與函數(shù)f(x)的圖象所圍成的封閉圖形如陰影所示.

   (Ⅰ)求、b、c的值

   (Ⅱ)求陰影面積S關(guān)于t的函數(shù)S(t)的解析式;

   (Ⅲ)若問(wèn)是否存在實(shí)數(shù)m,使得y=f(x)的圖象與y=g(x)的圖象有且只有兩個(gè)不同的交點(diǎn)?若存在,求出m的值;若不存在,說(shuō)明理由.

解:(I)由圖形可知二次函數(shù)的圖象過(guò)點(diǎn)(0,0),(8,0),并且f(x)的最大值為16

,

∴函數(shù)f(x)的解析式為…………………………4分

(Ⅱ)由

∵0≤t≤2,∴直線l1與f(x)的圖象的交點(diǎn)坐標(biāo)為(………………6分

由定積分的幾何意義知:

………………………………9分

(Ⅲ)令

因?yàn)閤>0,要使函數(shù)f(x)與函數(shù)g(x)有且僅有2個(gè)不同的交點(diǎn),則函數(shù)

的圖象與x軸的正半軸有且只有兩個(gè)不同的交點(diǎn)

∴x=1或x=3時(shí),

當(dāng)x∈(0,1)時(shí),是增函數(shù);

當(dāng)x∈(1,3)時(shí),是減函數(shù)

當(dāng)x∈(3,+∞)時(shí),是增函數(shù)

   ……12分

又因?yàn)楫?dāng)x→0時(shí),;當(dāng)

所以要使有且僅有兩個(gè)不同的正根,必須且只須

, ∴m=7或

∴當(dāng)m=7或時(shí),函數(shù)f(x)與g(x)的圖象有且只有兩個(gè)不同交點(diǎn)。

…………14分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•廣東模擬)(本小題滿分14分 已知函數(shù)f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化簡(jiǎn)f(x)的表達(dá)式,并求f(x)的最小正周期;
(II)當(dāng)x∈[0,
π
2
]  時(shí),求函數(shù)f(x)
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分14分)設(shè)橢圓C1的方程為(ab>0),曲線C2的方程為y=,且曲線C1C2在第一象限內(nèi)只有一個(gè)公共點(diǎn)P。(1)試用a表示點(diǎn)P的坐標(biāo);(2)設(shè)A、B是橢圓C1的兩個(gè)焦點(diǎn),當(dāng)a變化時(shí),求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個(gè)。設(shè)g(a)是以橢圓C1的半焦距為邊長(zhǎng)的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題

(本小題滿分14分)
已知=2,點(diǎn)()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項(xiàng)公式;
(3)記,求數(shù)列{}的前n項(xiàng)和,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

 (本小題滿分14分)

某網(wǎng)店對(duì)一應(yīng)季商品過(guò)去20天的銷售價(jià)格及銷售量進(jìn)行了監(jiān)測(cè)統(tǒng)計(jì)發(fā)現(xiàn),第天()的銷售價(jià)格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.

(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;

(Ⅱ)求該商品第7天的利潤(rùn);

(Ⅲ)該商品第幾天的利潤(rùn)最大?并求出最大利潤(rùn).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分14分)已知的圖像在點(diǎn)處的切線與直線平行.

⑴ 求,滿足的關(guān)系式;

⑵ 若上恒成立,求的取值范圍;

⑶ 證明:

 

查看答案和解析>>

同步練習(xí)冊(cè)答案