若a、b均為不等于零的實數(shù),給出下列兩個條件.條件甲:對于區(qū)間[-1,0]上的一切x值,ax+b>0恒成立;條件乙:2b-a>0,則甲是乙的( )
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分也不必要條件
科目:高中數(shù)學(xué) 來源: 題型:
已知數(shù)列{an}的首項a1=1,且滿足an+1= (n∈N*).
(1)設(shè)bn=,求證:數(shù)列{bn}是等差數(shù)列,并求數(shù)列{an}的通項公式;
(2)設(shè)cn=bn·2n,求數(shù)列{cn}的前n項和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知{an}為等差數(shù)列,{bn}為正項等比數(shù)列,公式q≠1,若a1=b1,a11=b11,則( )
A.a6=b6 B.a6>b6
C.a6<b6 D.以上都有可能
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知數(shù)列{an}的通項公式為an=2n(n∈N*),把數(shù)列{an}的各項排列成如圖所示的三角形數(shù)陣:
2
22 23
24 25 26
27 28 29 210
……
記M(s,t)表示該數(shù)陣中第s行的第t個數(shù),則M(11,2)對應(yīng)的數(shù)是________(用2n的形式表示,n∈N).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知f(x)=a1x+a2x2+…+anxn(n為正偶數(shù))且{an}為等差數(shù)列,f(1)=n2,f(-1)=n,試比較與3的大小,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知定義域為R的偶函數(shù)f(x)在(-∞,0]上是減函數(shù),且f=2,則不等式f(log4x)>2的解集為( )
A.(0,)∪(2,+∞) B.(2,+∞)
C.(0,)∪(,+∞) D.(0,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
在R上定義運算:=ad-bc.若不等式≥1對任意實數(shù)x恒成立,則實數(shù)a的最大值為( )
A.- B.-
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
某公司準(zhǔn)備進(jìn)行兩種組合投資,穩(wěn)健型組合投資每份由金融投資20萬元,房地產(chǎn)投資30萬元組成;進(jìn)取型組合投資每份由金融投資40萬元,房地產(chǎn)投資30萬元組成.已知每份穩(wěn)健型組合投資每年可獲利10萬元,每份進(jìn)取型組合投資每年可獲利15萬元.若可作投資用的資金中,金融投資不超過160萬元,房地產(chǎn)投資不超過180萬元,那么這兩種組合投資各應(yīng)注入多少份,才能使一年獲利總額最多?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com