(x+yi)2=y+xi,y和x都為實(shí)數(shù),求x,y的值.
考點(diǎn):復(fù)數(shù)代數(shù)形式的乘除運(yùn)算
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:化簡(jiǎn)可得x2+2xyi-y2=y+xi,由復(fù)數(shù)相等的定義可得xy的方程組,解方程組可得.
解答: 解:由題意可得x2+2xyi-y2=y+xi,
由復(fù)數(shù)相等的定義可得
x2-y2=y
2xy=x
,
解得
x=0
y=0
,或
x=±
3
2
y=
1
2
點(diǎn)評(píng):本題考查復(fù)數(shù)的代數(shù)形式的乘除運(yùn)算,涉及復(fù)數(shù)相等,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
log2(|x|+2)(x≤0)
x2+1(x>0)
,若f(x)=2,則x的值是( 。
A、1或2B、2或-1
C、1或-2D、±1或±2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(2-a)lnx-1,g(x)=lnx+ax2+x(a∈R),令φ(x)=f(x)+g′(x).
(1)當(dāng)a=0時(shí),求φ(x)的極值;
(2)當(dāng)a<-2時(shí),求φ(x)的單調(diào)區(qū)間;
(3)當(dāng)-3<a<-2時(shí),若對(duì)?λ1,λ2∈[1,3],使得|φ(λ1)-φ(λ2)|<(m+ln2)a-2ln3恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

解方程:lgx+2log10xx=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=xlnx+1.
(1)求函數(shù)f(x)在x∈[e-2,e2]上的最大值與最小值;
(2)若x>1時(shí),函數(shù)y=f(x)的圖象恒在直線y=kx上方,求實(shí)數(shù)k的取值范圍;
(3)證明:當(dāng)n∈N*時(shí),ln(n+1)>
1
2
+
1
3
+
1
4
+…+
1
n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x-
1
x
-alnx(a∈R).
(1)當(dāng)a=2時(shí),求f(x)的單調(diào)區(qū)間;
(2)若f(x)有兩個(gè)極值點(diǎn)x1和x2,記過(guò)點(diǎn)A(x1,f(x1)),B(x2,f(x2))的直線的斜率為k,問(wèn):是否存在a,使得k=2-a?若存在,求出a的值,若不存在,請(qǐng)說(shuō)明理由;
(3)證明:
n
k=2
ln
k-1
k+1
2-n-n2
2n(n+1)
(n∈N*,n≥2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=-
4+
1
x2
,點(diǎn)Pn(an,-
1
an+1
)在曲線y=f(x)上(n∈N*)且a1=1,an>0.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足
1
bn
=-
1
an2
-n+1,對(duì)于任意n≥2,n∈N*都有λbn+
1
bn+1
≥λ恒成立,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知U=R,B={x|x>1},求∁UB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算3log3
5
+
3
log3
1
5
=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案