已知U=R,B={x|x>1},求∁UB.
考點(diǎn):補(bǔ)集及其運(yùn)算
專題:集合
分析:由全集U=R及B,求出B的補(bǔ)集即可.
解答: 解:∵U=R,B={x|x>1},
∴∁UB={x|x≤1}.
點(diǎn)評:此題考查了補(bǔ)集及其運(yùn)算,熟練掌握補(bǔ)集的定義是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=lnx,g(x)=f(x)+f′(x).
(1)求g(x)在定義域內(nèi)的最小值;
(2)若g(a)-g(x)<
1
a
對任意x>0都成立,求實(shí)數(shù)a的取值范圍;
(3)討論g(x)與g(
1
x
)的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(x+yi)2=y+xi,y和x都為實(shí)數(shù),求x,y的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx+x2
(Ⅰ)求h(x)=f(x)-3x的極值;
(Ⅱ)若函數(shù)g(x)=f(x)-ax在定義域內(nèi)為增函數(shù),求實(shí)數(shù)a的取值范圍;
(Ⅲ)設(shè)F(x)=2f(x)-3x2-k,k∈R,若函數(shù)F(x)存在兩個零點(diǎn)m,n(0<m<n),且滿足2x0=m+n,問:函數(shù)F(x)在(x0,F(xiàn)(x0))處的切線能否平行于x軸?若能,求出該切線方程,若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x=1和x=2是函數(shù)f(x)=alnx+bx2+x的兩個極值點(diǎn)
(1)求a,b的值;
(2)求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x∈R,函數(shù)f(x)=
e-x
2
(ax2+a+1).
(Ⅰ)當(dāng)a=-1時(shí),求f(x)在[-1,2]上的最值;
(Ⅱ)求證:當(dāng)a≥0時(shí),f(x)在R上為減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集U={1,2,3,4},且A={x|x2-5x+m=0,x∈U},若∁UA={1,4}.
(1)求集合A;
(2)求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知曲線y=x3-2x和其上一點(diǎn),這點(diǎn)的橫坐標(biāo)為2,求曲線在這點(diǎn)的切線方程;
(2)求函數(shù)f(x)=3x3-9x+5在[-2,2]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)m,n∈R,若直線l:mx+ny-1=0與x軸相交于點(diǎn)A,與y軸相交于點(diǎn)B,且坐標(biāo)原點(diǎn)O到直線l的距離為
3
,則△AOB的面積S的最小值為
 

查看答案和解析>>

同步練習(xí)冊答案