【題目】已知拋物線的焦點(diǎn)為F,過點(diǎn)F的直線l交拋物線于A,B兩點(diǎn),以線段AB為直徑的圓交x軸于M,N兩點(diǎn),設(shè)線段AB的中點(diǎn)為Q.若拋物線C上存在一點(diǎn)到焦點(diǎn)F的距離等于3.則下列說法正確的是( )
A.拋物線的方程是B.拋物線的準(zhǔn)線是
C.的最小值是D.線段AB的最小值是6
【答案】BC
【解析】
求得拋物線的焦點(diǎn)和準(zhǔn)線方程,運(yùn)用拋物線的定義可得p,進(jìn)而得到拋物線方程和準(zhǔn)線方程;求得,設(shè),,直線l的方程為,聯(lián)立拋物線方程,運(yùn)用韋達(dá)定理和弦長公式可得線段AB的最小值,可得圓Q的半徑,由中點(diǎn)坐標(biāo)公式可得Q的坐標(biāo),運(yùn)用直角三角形的銳角三角函數(shù)的定義,可得所求的最小值.
拋物線的焦點(diǎn)為,得拋物線的準(zhǔn)線方程為,
點(diǎn)到焦點(diǎn)的距離等于3,可得,解得,
則拋物線的方程為,準(zhǔn)線為,故A錯(cuò)誤,B正確;
由題知直線的斜率存在,,
設(shè),,直線的方程為,
由,消去得,
所以,,
所以,所以AB的中點(diǎn)Q的坐標(biāo)為,
,故線段AB的最小值是4,即D錯(cuò)誤;
所以圓Q的半徑為,
在等腰中,,
當(dāng)且僅當(dāng)時(shí)取等號(hào),
所以的最小值為,即C正確,
故選:BC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四棱錐與直四棱柱組合而成的幾何體中,四邊形是菱形,,,,,交于,平面,為的中點(diǎn).
(1)證明:平面;
(2)動(dòng)點(diǎn)在線段上(包括端點(diǎn)),若二面角的余弦值為,求的長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1) 討論的單調(diào)性;
(2) 設(shè),當(dāng)時(shí), ,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)().
(Ⅰ)設(shè)為函數(shù)的導(dǎo)函數(shù),求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)在上有最大值,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓 ()的一個(gè)焦點(diǎn)點(diǎn)為橢圓內(nèi)一點(diǎn),若橢圓上存在一點(diǎn),使得,則橢圓的離心率的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在定義域內(nèi)有兩個(gè)不同的極值點(diǎn).
(Ⅰ)求實(shí)數(shù)的取值范圍;
(Ⅱ)記兩個(gè)極值點(diǎn)為,且,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象與過原點(diǎn)的直線恰有四個(gè)交點(diǎn),設(shè)四個(gè)交點(diǎn)中橫坐標(biāo)最大值為,則( )
A. B. C. 0 D. 2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,動(dòng)點(diǎn)分別與兩個(gè)定點(diǎn),的連線的斜率之積為.
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)設(shè)過點(diǎn)的直線與軌跡交于,兩點(diǎn),判斷直線與以線段為直徑的圓的位置關(guān)系,并說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com