【題目】已知函數(shù),.
(1)求的單調(diào)區(qū)間;
(2)若在上成立,求的取值范圍.
【答案】(1)單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;(2).
【解析】
(1),利用,解得,即可得出單調(diào)區(qū)間.
(2)法一:由得,即.令,利用導(dǎo)數(shù)研究其單調(diào)性即可得出.
法二:由得,即,令,利用導(dǎo)數(shù)研究其單調(diào)性即可得出.
解:(1),
當(dāng)時(shí),,單調(diào)遞增;
當(dāng)時(shí),,單調(diào)遞減,
故單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.
(2)法一:由得,即,
令,,
,,在單調(diào)遞增,
又,,
所以有唯一的零點(diǎn),
且當(dāng)時(shí),,即,單調(diào)遞減,
當(dāng)時(shí),,即,單調(diào)遞增,
所以,
又因?yàn)?/span>所以,
所以,的取值范圍是.
法二:由得,
即,
令,因?yàn)?/span>,,
所以存在零點(diǎn);
令,則,當(dāng)時(shí),,單調(diào)遞減,
當(dāng)時(shí),,單調(diào)遞增.
所以,
所以,
所以的取值范圍是.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為響應(yīng)市政府提出的以新舊動(dòng)能轉(zhuǎn)換為主題的發(fā)展戰(zhàn)略,某公司花費(fèi)100萬元成本購買了1套新設(shè)備用于擴(kuò)大生產(chǎn),預(yù)計(jì)該設(shè)備每年收入100萬元,第一年該設(shè)備的各種消耗成本為8萬元,且從第二年開始每年比上一年消耗成本增加8萬元.
(1)求該設(shè)備使用x年的總利潤y(萬元)與使用年數(shù)x(x∈N*)的函數(shù)關(guān)系式(總利潤=總收入﹣總成本);
(2)這套設(shè)備使用多少年,可使年平均利潤最大?并求出年平均利潤的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,圓的參數(shù)方程為(為參數(shù)),過點(diǎn)作斜率為的直線與圓交于,兩點(diǎn).
(1)若圓心到直線的距離為,求的值;
(2)求線段中點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某品牌手機(jī)廠商推出新款的旗艦機(jī)型,并在某地區(qū)跟蹤調(diào)查得到這款手機(jī)上市時(shí)間(第周)和市場占有率()的幾組相關(guān)數(shù)據(jù)如下表:
(1)根據(jù)表中的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;
(2)根據(jù)上述線性回歸方程,預(yù)測在第幾周,該款旗艦機(jī)型市場占有率將首次超過(最后結(jié)果精確到整數(shù)).
參考公式:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某區(qū)“創(chuàng)文明城區(qū)”(簡稱“創(chuàng)城”)活動(dòng)中,教委對本區(qū)四所高中學(xué)校按各校人數(shù)分層抽樣,隨機(jī)抽查了100人,將調(diào)查情況進(jìn)行整理后制成下表:
學(xué)校 | ||||
抽查人數(shù) | 50 | 15 | 10 | 25 |
“創(chuàng)城”活動(dòng)中參與的人數(shù) | 40 | 10 | 9 | 15 |
(注:參與率是指:一所學(xué)!皠(chuàng)城”活動(dòng)中參與的人數(shù)與被抽查人數(shù)的比值)假設(shè)每名高中學(xué)生是否參與”創(chuàng)城”活動(dòng)是相互獨(dú)立的.
(1)若該區(qū)共2000名高中學(xué)生,估計(jì)學(xué)校參與“創(chuàng)城”活動(dòng)的人數(shù);
(2)在隨機(jī)抽查的100名高中學(xué)生中,隨機(jī)抽取1名學(xué)生,求恰好該生沒有參與“創(chuàng)城”活動(dòng)的概率;
(3)在上表中從兩校沒有參與“創(chuàng)城”活動(dòng)的同學(xué)中隨機(jī)抽取2人,求恰好兩校各有1人沒有參與“創(chuàng)城”活動(dòng)的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是矩形,平面,,點(diǎn)、分別在線段、上,且,其中,連接,延長與的延長線交于點(diǎn),連接.
(Ⅰ)求證:平面;
(Ⅱ)若時(shí),求二面角的正弦值;
(Ⅲ)若直線與平面所成角的正弦值為時(shí),求值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)學(xué)建模課上,老師給大家?guī)砹艘粍t新聞:“2019年8月16日上午,423米的東莞第一高樓民盈國貿(mào)中心2號樓(以下簡稱“國貿(mào)中心”)正式封頂,隨著最后一方混凝土澆筑到位,標(biāo)志著東莞最高樓紀(jì)錄誕生,由東莞本地航母級企業(yè)民盈集團(tuán)刷新了東莞天際線,比之前的東莞第一高樓臺(tái)商大廈高出134米.”在同學(xué)們的驚嘆中,老師提出了問題:國貿(mào)中心真有這么高嗎?我們能否運(yùn)用所學(xué)知識測量驗(yàn)證一下?一周后,兩個(gè)興趣小組分享了他們各自的測量方案.
第一小組采用的是“兩次測角法”:他們在國貿(mào)中心隔壁的會(huì)展中心廣場上的點(diǎn)測得國貿(mào)中心頂部的仰角為,正對國貿(mào)中心前進(jìn)了米后,到達(dá)點(diǎn),在點(diǎn)測得國貿(mào)中心頂部的仰角為,然后計(jì)算出國貿(mào)中心的高度(如圖).
第二小組采用的是“鏡面反射法”:在國貿(mào)中心后面的新世紀(jì)豪園一幢11層樓(與國貿(mào)中心處于同一水平面,每層約3米)樓頂天臺(tái)上,進(jìn)行兩個(gè)操作步驟:①將平面鏡置于天臺(tái)地面上,人后退至從鏡中能看到國貿(mào)大廈的頂部位置,測量出人與鏡子的距離為米;②正對國貿(mào)中心,將鏡子前移米,重復(fù)①中的操作,測量出人與鏡子的距離為米.然后計(jì)算出國貿(mào)中心的高度(如圖).
實(shí)際操作中,第一小組測得米,,,最終算得國貿(mào)中心高度為;第二小組測得米,米,米,最終算得國貿(mào)中心高度為;假設(shè)他們測量者的“眼高”都為米.
(1)請你用所學(xué)知識幫兩個(gè)小組完成計(jì)算(參考數(shù)據(jù):,,答案保留整數(shù)結(jié)果);
(2)你認(rèn)為哪個(gè)小組的方案更好,說出你的理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍;
(2)已知函數(shù),,如果函數(shù)有兩個(gè)極值點(diǎn)、,求證:.(參考數(shù)據(jù):,,,為自然對數(shù)的底數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中正確的是( )
A.是空間中的四點(diǎn),若不能構(gòu)成空間基底,則共面
B.已知為空間的一個(gè)基底,若,則也是空間的基底
C.若直線的方向向量為,平面的法向量為,則直線
D.若直線的方向向量為,平面的法向量為,則直線與平面所成角的正弦值為
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com