【題目】設(shè)為實數(shù),函數(shù)

1)當(dāng)時,求在區(qū)間上的最大值;

2)設(shè)函數(shù)在區(qū)間上的最大值,求的解析式;

3)求的最小值.

【答案】(1)0(2)ta(3)128

【解析】

1a1時,函數(shù)fx)=(x121,根據(jù)二次函數(shù)的性質(zhì)即可求出它的值域;

2)化簡gx)=|fx||xx2a|,討論確定函數(shù)的單調(diào)性,求出最大值,得出ta)的解析式;

3)分別求出各段函數(shù)的最小值(或下確界),比較各個最小值,其中的最小值,即為求ta)的最小值.

1a1時,fx)=x22x=(x121

x[0,2],∴﹣1≤x1≤1

∴﹣1≤x121≤0,

在區(qū)間上的最大值為0;

2gx)=|fx||xx2a|

①當(dāng)a≤0時,gx)=x22ax[0,2]上是增函數(shù),

ta)=g2)=44a;

②當(dāng)0a1時,

gx)在[0,a)上是增函數(shù),在[a,2a)上是減函數(shù),在[2a,2]上是增函數(shù),

ga)=a2,g2)=44a,

ga)﹣g2)=a2+4a4=(a22)(a+22),

故當(dāng)0a22時,

ta)=g2)=44a

當(dāng)22≤a1時,

ta)=ga)=a2,

③當(dāng)1≤a2時,

gx)在[0,a)上是增函數(shù),在[a,2]上是減函數(shù),

ta)=ga)=a2,

④當(dāng)a≥2時,gx)在[0,2]上是增函數(shù),

ta)=g2)=4a4,

ta;

3)由(2)知,

當(dāng)a22時,ta)=42a是單調(diào)減函數(shù),,無最小值;

當(dāng)時,ta)=a2是單調(diào)增函數(shù),且ta)的最小值為t22)=128;

當(dāng)時,ta)=4a4是單調(diào)增函數(shù),最小值為t2)=4;

比較得ta)的最小值為t22)=128

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)向量,令函數(shù),若函數(shù)的部分圖象如圖所示,且點的坐標(biāo)為.

(1)求點的坐標(biāo);

(2)求函數(shù)的單調(diào)增區(qū)間及對稱軸方程;

(3)若把方程的正實根從小到大依次排列為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形,,現(xiàn)將沿折起,當(dāng)二面角的大小在時,直線所成角為,則的最大值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解高一學(xué)生暑假里在家讀書情況,特隨機調(diào)查了50名男生和50名女生平均每天的閱讀時間(單位:分鐘),統(tǒng)計如下表:

(1)根據(jù)統(tǒng)計表判斷男生和女生誰的平均讀書時間更長?并說明理由;

(2)求100名學(xué)生每天讀書時間的平均數(shù),并將每天平均時間超過和不超過平均數(shù)的人數(shù)填入下列的列聯(lián)表:

(3)根據(jù)(2)中列聯(lián)表,能否有99%的把握認(rèn)為“平均閱讀時間超過或不超過平均數(shù)是否與性別有關(guān)?”

附:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知上的偶函數(shù),當(dāng)時,.對于結(jié)論

1)當(dāng)時,

2)函數(shù)的零點個數(shù)可以為;

3)若函數(shù)在區(qū)間上恒為正,則實數(shù)的范圍是

以上說法正確的序號是______________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某運動員每次射擊命中不低于8環(huán)的概率為,命中8環(huán)以下的概率為,現(xiàn)用隨機模擬的方法估計該運動員三次射擊中有兩次命中不低于8環(huán),一次命中8環(huán)以下的概率:先由計算器產(chǎn)生09之間取整數(shù)值的隨機數(shù),指定0、1、2、3、4、5表示命中不低于8環(huán),6、7、8、9表示命中8環(huán)以下,再以每三個隨機數(shù)為一組,代表三次射擊的結(jié)果,產(chǎn)生了如下20組隨機數(shù):

據(jù)此估計,該運動員三次射擊中有兩次命中不低于8環(huán),一次命中8環(huán)以下的概率為(

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】利用獨立性檢驗的方法調(diào)查高中生性別與愛好某項運動是否有關(guān),通過隨機調(diào)查200名高中生是否愛好某項運動,利用列聯(lián)表,由計算可得,參照下表:

0.01

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5,024

6.635

7.879

10.828

得到的正確結(jié)論是(

A. 99%以上的把握認(rèn)為“愛好該項運動與性別無關(guān)

B. 99%以上的把握認(rèn)為“愛好該項運動與性別有關(guān)”

C. 在犯錯誤的概率不超過0.5%的前提下,認(rèn)為“愛好該項運動與性別有關(guān)”

D. 在犯錯誤的概率不超過0.5%的前提下,認(rèn)為“愛好該項運動與性別無關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,圓的普通方程為. 在以坐標(biāo)原點為極點,軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為 .

(Ⅰ) 寫出圓 的參數(shù)方程和直線的直角坐標(biāo)方程;

( Ⅱ ) 設(shè)直線軸和軸的交點分別為,為圓上的任意一點,求的取值范圍.

【答案】(1);.

(2).

【解析】試題分析】(I)利用圓心和半徑,寫出圓的參數(shù)方程,將圓的極坐標(biāo)方程展開后化簡得直角坐標(biāo)方程.(II)求得兩點的坐標(biāo), 設(shè)點,代入向量,利用三角函數(shù)的值域來求得取值范圍.

試題解析】

(Ⅰ)圓的參數(shù)方程為為參數(shù)).

直線的直角坐標(biāo)方程為.

(Ⅱ)由直線的方程可得點,點.

設(shè)點,則 .

.

由(Ⅰ)知,則 .

因為,所以.

型】解答
結(jié)束】
23

【題目】選修4-5:不等式選講

已知函數(shù) .

(Ⅰ)若對于任意, 都滿足,求的值;

(Ⅱ)若存在,使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點,橢圓的離心率為,是橢圓的右焦點,直線的斜率為為坐標(biāo)原點.

(1)求的方程;

(2)設(shè)過點的動直線相交于兩點,問:是否存在直線,使以為直徑的圓經(jīng)過原點,若存在,求出對應(yīng)直線的方程,若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案