精英家教網 > 高中數學 > 題目詳情
設函數f(x)=ax2-x-2a,g(x)=ax+b,其中a,b∈Ra>0.已知f(1)+g(1)+3=0.
(1)求b的值;
(2)設集合A={y|y=f(x),x∈[-2,0]},B={y|y=g(x),x∈[-2,0]}且A∩B≠ϕ試求a的取值范圍
(3)是否存在實數a,使得對于任意的正數x,都有f(x)•g(x)≥0?若存在,請求出a的值,若不存在,請說明理由.
考點:函數的零點,交集及其運算,函數單調性的性質
專題:計算題,函數的性質及應用,集合
分析:(1)代入求得f(1)=-a-1,g(1)=a+b;從而得到f(1)+g(1)+3=b-1+3=0;從而解得.
(2)化簡集合A={y|y=f(x),x∈[-2,0]}=[-2a,2a+2],B={y|y=g(x),x∈[-2,0]}=[-2a-2.-2];從而解得.
(3)設存在實數a,使得對于任意的正數x,都有f(x)•g(x)≥0;討論兩個函數的正負值即可.
解答: 解:(1)由題意,f(1)=-a-1,g(1)=a+b;
故f(1)+g(1)+3=b-1+3=0;
故b=-2;
(2)∵a>0,函數f(x)=ax2-x-2a的圖象開口向上,
且對稱軸為x=
1
2a
>0;
∴函數f(x)=ax2-x-2a在[-2,0]上單調遞減,
且f(-2)=2a+2,f(0)=-2a;
故集合A={y|y=f(x),x∈[-2,0]}=[-2a,2a+2],
同理,B={y|y=g(x),x∈[-2,0]}=[-2a-2.-2];
又∵A∩B≠ϕ,
∴-2a≤-2;
故a的取值范圍為[1,+∞).
(3)設存在實數a,使得對于任意的正數x,都有f(x)•g(x)≥0;
當g(x)=ax-2=0時,x=
2
a
,當g(x)>0時,x>
2
a
;當g(x)<0時,0<x<
2
a
;
∵函數f(x)=ax2-x-2a的圖象開口向上,且f(0)=-2a<0;
∴函數f(x)=ax2-x-2a必有一正一負兩零點,不妨設x1<0<x2
則易知只能有x2=
2
a
;
即f(
2
a
)=0,解得,a=1;
當a=1時,f(x)g(x)=(x-2)2(x+1)≥0;
綜上所述,存在唯一實數a=1,使得對于任意的正數x,都有f(x)•g(x)≥0.
點評:本題主要基于對集合的運算、函數的基本性質和函數的零點等基礎知識的考查,綜合考查了抽象概括能力、推理論證能力、運算求解能力及應用意識和創(chuàng)新意識,考查了函數與方程思想、化歸與轉化思想、數形結合思想及分類與整合的思想.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦點分別為F1,F2,過點F2作雙曲線C的一條漸近線的垂線,垂足為H,交雙曲線于點M且
F2M
=2
MH
,則雙曲線C的離心率為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

退休年齡延遲是平均預期壽命延長和人口老齡化背景下的一種趨勢.某機構為了解某城市市民的年齡構成,從該城市市民中隨機抽取年齡段在20~80歲(含20歲和80歲)之間的600人進行調查,并按年齡層次[20,30),[30,40),[40,50),[50,60),[60,70),[70,80]繪制頻率分布直方圖,如圖所示.若規(guī)定年齡分布在[20,40)歲的人為“青年人”,[40,60)為“中年人”,[60,80]為“老年人”.

(Ⅰ)若每一組數據的平均值用該區(qū)間中點值來代替,試估算所調查的600人的平均年齡;
(Ⅱ)將上述人口分布的頻率視為該城市在20-80年齡段的人口分布的概率.從該城市20-80年齡段市民中隨機抽取3人,記抽到“老年人”的人數為X,求隨機變量X的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

若曲線C1:x2+y2-4x=0與曲線C2:y(y-mx-x)=0有四個不同的交點,則實數m的取值范圍是( 。
A、(-
2
5
5
,
2
5
5
B、(-
2
5
5
,0)∪(0,
2
5
5
C、[-
3
3
,
3
3
]
D、(-∞,-
3
3
)∪(
3
3
,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:

在我市2015年“創(chuàng)建文明城市”知識競賽中,考評組從中抽取200份試卷進行分析,其分數的頻率分布直方圖如圖所示,則分數在區(qū)間[60,70)上的人數大約有
 
人.

查看答案和解析>>

科目:高中數學 來源: 題型:

若實數x,y滿足
x-y+2≥0
x+y≥0
x≤1
,則z=3x+y的最小值是( 。
A、-4B、-2C、2D、6

查看答案和解析>>

科目:高中數學 來源: 題型:

在△ABC中,內角A,B,C的對邊分別為a,b,c,已知a-b=2,c=4,sinA=2sinB.
(Ⅰ)求△ABC的面積;
(Ⅱ)求sin(2A-B).

查看答案和解析>>

科目:高中數學 來源: 題型:

已知a,b為非零實數,且a<b,則下列命題成立的是( 。
A、a2<b2
B、a2b<a3
C、
b
a
a
b
D、
a
a-b
b
a-b

查看答案和解析>>

科目:高中數學 來源: 題型:

若函數f(x)=tan(2x-
π
6
),則f(x)的最小正周期為
 
;f(
π
8
)=
 

查看答案和解析>>

同步練習冊答案