A. | -2+i | B. | 2+i | C. | -1+2i | D. | 1+2i |
分析 利用復(fù)數(shù)的代數(shù)形式的乘除運算法則直接求解.
解答 解:∵復(fù)數(shù)z=1-i,
∴$\frac{-3+4i}{z+1}$=$\frac{-3+4i}{2-i}$=$\frac{(-3+4i)(2+i)}{(2-i)(2+i)}$
=$\frac{-6+8i-3i+4{i}^{2}}{4-{i}^{2}}$
=$\frac{-10+5i}{5}$=-2+i.
故選:A.
點評 本題考查復(fù)數(shù)的運算,涉及到復(fù)數(shù)的代數(shù)形式的乘除運算法則等基礎(chǔ)知識,考查推理論證能力、運算求解能力,是基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 將f(x)的圖象向左平移$\frac{π}{2}$個單位后得到g(x)的圖象 | |
B. | 函數(shù)y=f(x)•g(x)的最小正周期為2π | |
C. | 函數(shù)y=f(x)•g(x)的最大值為1 | |
D. | x=$\frac{π}{2}$是函數(shù)y=f(x)•g(x)圖象的一條對稱軸 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 9 | B. | 27 | C. | 32 | D. | 103 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com