【題目】在三棱柱中,⊥底面,,,為線段上一點.
(Ⅰ)若,求與所成角的余弦值;
(Ⅱ)若,求與平面所成角的大。
(Ⅲ)若二面角的大小為,求的值.
【答案】(Ⅰ);(Ⅱ)30°;(Ⅲ)1.
【解析】
(Ⅰ)以為原點,為軸,為軸,為軸,建立空間直角坐標系,利用向量法能求出與所成角的余弦值;
(Ⅱ)設(shè),由,得,從而,求出平面的法向量,由此能求出與平面所成角的大。
(Ⅲ)求出平面的法向量和平面的法向量,利用同量法能求出當二面角的大小為時,的值.
解:(Ⅰ)三棱柱中,⊥底面,
,,為線段上一點,
以為原點,為軸,為軸,為軸,建立空間直角坐標系,
設(shè),則,
∵,∴,
∴,,
設(shè)與所成角為,
則與所成角的余弦值為:,
(Ⅱ)設(shè),由,
得,
解得:,
∴,
設(shè)與平面所成角為,
∵平面的法向量為,
∴,
∴與平面所成角的大小為30°.
(Ⅲ)設(shè),
則,
而,
設(shè)平面的法向量,
則,即,
取,得,
平面的法向量,
∵二面角的大小為,
∴,
解得:,
則,即為的中點,
,即,
∴當二面角的大小為時,.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,.
(1)求函數(shù)的極值;
(2)直線為函數(shù)圖象的一條切線,若對任意的,都有成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè).
(1)若,且為函數(shù)的一個極值點,求函數(shù)的單調(diào)遞增區(qū)間;
(2)若,且函數(shù)的圖象恒在軸下方,其中是自然對數(shù)的底數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)為等差數(shù)列的前n項和,是正項等比數(shù)列,且,.在①,②,③這三個條件中任選一個,回答下列為題:
(1)求數(shù)列和的通項公式;
(2)如果(m,),寫出m,n的關(guān)系式,并求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有一個同學(xué)家開了一個小賣部,他為了研究氣溫對熱飲飲料銷售的影響,經(jīng)過統(tǒng)計,得到一個賣出的熱飲杯數(shù)與當天氣溫的散點圖和對比表:
攝氏溫度 | ||||||||
熱飲杯數(shù) |
(1)從散點圖可以發(fā)現(xiàn),各點散布在從左上角到右下角的區(qū)域里。因此,氣溫與當天熱飲銷售杯數(shù)之間成負相關(guān),即氣溫越高,當天賣出去的熱飲杯數(shù)越少。統(tǒng)計中常用相關(guān)系數(shù)來衡量兩個變量之間線性關(guān)系的強弱.統(tǒng)計學(xué)認為,對于變量、,如果,那么負相關(guān)很強;如果,那么正相關(guān)很強;如果,那么相關(guān)性一般;如果,那么相關(guān)性較弱。請根據(jù)已知數(shù)據(jù),判斷氣溫與當天熱飲銷售杯數(shù)相關(guān)性的強弱.
(2)(i)請根據(jù)已知數(shù)據(jù)求出氣溫與當天熱飲銷售杯數(shù)的線性回歸方程;
(ii)記為不超過的最大整數(shù),如,.對于(i)中求出的線性回歸方程,將視為氣溫與當天熱飲銷售杯數(shù)的函數(shù)關(guān)系.已知氣溫與當天熱飲每杯的銷售利潤的關(guān)系是 (單位:元),請問當氣溫為多少時,當天的熱飲銷售利潤總額最大?
(參考公式),,
(參考數(shù)據(jù)),, .
,,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
當時,求函數(shù)的單調(diào)增區(qū)間;
若函數(shù)在上是增函數(shù),求實數(shù)a的取值范圍;
若,且對任意,,,都有,求實數(shù)a的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓:,點,點是圓上任意一點,線段的垂直平分線交線段于點.
(1)求點的軌跡方程.
(2)設(shè)點,是的軌跡上異于頂點的任意兩點,以為直徑的圓過點.求證直線過定點,并求出該定點的坐標.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)(,).
(1)當時,在上是單調(diào)遞增函數(shù),求的取值范圍;
(2)當時,討論函數(shù)的單調(diào)區(qū)間;
(3)對于任意給定的正實數(shù),證明:存在實數(shù),使得
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com