【題目】已知圓,點(diǎn),點(diǎn)是圓上任意一點(diǎn),線段的垂直平分線交線段于點(diǎn).

1)求點(diǎn)的軌跡方程.

2)設(shè)點(diǎn),的軌跡上異于頂點(diǎn)的任意兩點(diǎn),以為直徑的圓過點(diǎn).求證直線過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

【答案】1;(2)直線過定點(diǎn),證明見解析.

【解析】

1)根據(jù)已知可得,從而得點(diǎn)的軌跡為橢圓,即可求出方程;

2)設(shè)直線方程為,與橢圓方程聯(lián)立,得到兩點(diǎn)橫坐標(biāo)的關(guān)系,再由已知可得,利用兩點(diǎn)橫坐標(biāo)的關(guān)系,整理出關(guān)系或求出為定值,即可求出結(jié)論.

1)圓,得圓心,半徑,

的垂直平分線交線段于點(diǎn),

,

點(diǎn)的軌跡為橢圓,且焦點(diǎn)在軸,

,

點(diǎn)的軌跡方程為

2)依題意直線斜率存在,設(shè)其方程為

聯(lián)立,消去得,,

設(shè),則

為直徑的圓過點(diǎn),

,

整理得,此時恒成立,

所以直線過定點(diǎn).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱錐中,平面,,的中點(diǎn),的中點(diǎn).

1)證明:平面平面;

2)在線段上是否存在一點(diǎn),使平面?若存在,指出點(diǎn)的位置并給出證明,若不存在,說明理由;

3)若,求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱柱中,⊥底面,,為線段上一點(diǎn).

(Ⅰ)若,求所成角的余弦值;

(Ⅱ)若,求與平面所成角的大小;

(Ⅲ)若二面角的大小為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直五棱柱,中,,,,.

1)證明:平面;

2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】拋物線上任意兩點(diǎn)處的切線交于點(diǎn),稱阿基米德三角形”.當(dāng)線段經(jīng)過拋物線焦點(diǎn)時,具有以下特征:①點(diǎn)必在拋物線的準(zhǔn)線上;②為直角三角形,且;③.若經(jīng)過拋物線焦點(diǎn)的一條弦為,阿基米德三角形為,且點(diǎn)的縱坐標(biāo)為4,則直線的方程為(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】追求人類與生存環(huán)境的和諧發(fā)展是中國特色社會主義生態(tài)文明的價值取向.為了改善空氣質(zhì)量,某城市環(huán)保局隨機(jī)抽取了一年內(nèi)100天的空氣質(zhì)量指數(shù)()的檢測數(shù)據(jù),結(jié)果統(tǒng)計如下:

空氣質(zhì)量

優(yōu)

輕度污染

中度污染

重度污染

嚴(yán)重污染

天數(shù)

6

14

18

27

25

10

1)從空氣質(zhì)量指數(shù)屬于,的天數(shù)中任取3天,求這3天中空氣質(zhì)量至少有2天為優(yōu)的概率;

2)已知某企業(yè)每天的經(jīng)濟(jì)損失(單位:元)與空氣質(zhì)量指數(shù)的關(guān)系式為,試估計該企業(yè)一個月(按30天計算)的經(jīng)濟(jì)損失的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若,求的單調(diào)區(qū)間;

2)證明:(i

ii)對任意,恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為常數(shù), ,函數(shù), (其中是自然對數(shù)的底數(shù)).

(1)過坐標(biāo)原點(diǎn)作曲線的切線,設(shè)切點(diǎn)為,求證: ;

(2)令,若函數(shù)在區(qū)間上是單調(diào)函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線,過拋物線上點(diǎn)B作切線y軸于點(diǎn)

)求拋物線方程和切點(diǎn)的坐標(biāo);

)過點(diǎn)作拋物線的割線,在第一象限內(nèi)的交點(diǎn)記為,,設(shè)y軸上一點(diǎn),滿足中點(diǎn),求的取值范圍。

查看答案和解析>>

同步練習(xí)冊答案