【題目】如圖,邊長為的正方形與梯形所在的平面互相垂直,其中, 的中點.

(Ⅰ)證明: 平面

(Ⅱ)求與平面所成角的余弦值.

【答案】(1)見解析(2)

【解析】試題分析:Ⅰ)推導出OMAC,由此根據(jù)線面平行的判定定理能證明OM||平面ABCD.(Ⅱ)推導出BDDA,因為平面ADEF⊥平面ABCD,從而可得BD⊥平面ADEF,由此得到∠BFD的余弦值即為所求.

試題解析:

證明:(Ⅰ)∵O,M分別為EA,EC的中點, OMAC

OM平面ABCDAC平面ABCDOM∥平面ABCD

解:(ⅡDC=BC=1BCD=90°,

BDDA

∵平面ADEF⊥平面ABCD,平面ADEF平面ABCD=AD,BD平面ABCD

BD⊥平面ADEF

∴∠BFD的余弦值即為所求.

,

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),函數(shù)的導函數(shù)為

若直線與曲線恒相切于同一定點,求的方程;

⑵ 若,求證:當時, 恒成立;

⑶ 若當時, 恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下表提供了某廠節(jié)能降耗技術改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應的生產(chǎn)能耗y(噸標準煤)的幾組對照數(shù)據(jù).

x

3

4

5

6

y

2.5

3

4

4.5

(1)請畫出上表數(shù)據(jù)的散點圖

(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關于x的線性回歸方程;

(3)已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標準煤.試根據(jù)(2)求出的線性回歸方程,預測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標準煤.

(參考數(shù)值:3×2.5+4×3+5×4+6×4.5=66.5)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1,求曲線在點處的切線方程;

2若曲線與直線只有一個交點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),則(ⅰ____________

ⅱ)給出下列三個命題:①函數(shù)是偶函數(shù);②存在,使得以點為頂點的三角形是等腰三角形;③存在,使得以點為頂點的四邊形為菱形.

其中,所有真命題的序號是____________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在銳角三角形中,分別為內(nèi)角所對的邊,且滿足.

1)求角的大小;

2)若,且,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)R.

(1)當時,求函數(shù)的最小值;

(2)若對任意,恒有成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在R的函數(shù)是偶函數(shù),且滿足上的解析式為,過點作斜率為k的直線l,若直線l與函數(shù)的圖象至少有4個公共點,則實數(shù)k的取值范圍是

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】學校高一年級開設、、、五門選修課,每位同學須彼此獨立地選三課程,其中甲同學必選課程,不選課程,另從其余課程中隨機任選兩門課程.乙、丙兩名同學從五門課程中隨機任選三門課程.

Ⅰ)求甲同學選中課程且乙同學未選中課程的概率.

Ⅱ)用表示甲、乙、丙選中課程的人數(shù)之和,求的分布列和數(shù)學期望.

查看答案和解析>>

同步練習冊答案