【題目】在直角坐標(biāo)系中,直線與拋物線交于,兩點(diǎn),且.
(1)求的方程;
(2)試問:在軸的正半軸上是否存在一點(diǎn),使得的外心在上?若存在,求的坐標(biāo);若不存在,請說明理由..
【答案】(1); (2)在軸的正半軸上存在一點(diǎn),使得的外心在上.
【解析】
(1)聯(lián)立,得,利用 ,結(jié)合韋達(dá)定理列方程求得,從而可得結(jié)果;(2)求出線段的中垂線方程.聯(lián)立,得,解得或,從而的外心的坐標(biāo)為或,分別利用求得的值,驗(yàn)證是否符合題意即可.
(1)聯(lián)立,得,
則,,
從而 .
, ,
即,解得,故的方程為.
(2)設(shè)線段的中點(diǎn)為,
由(1)知,,,
則線段的中垂線方程為,即.
聯(lián)立,得,解得或,
從而的外心的坐標(biāo)為或.
假設(shè)存在點(diǎn) ,設(shè)的坐標(biāo)為,
,
,則.
,.
若的坐標(biāo)為,則,
,則的坐標(biāo)不可能為.
故在軸的正半軸上存在一點(diǎn),使得的外心在上.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形中,,,,四邊形是矩形,且平面平面.
(Ⅰ)求證:平面;
(Ⅱ)當(dāng)二面角的平面角的余弦值為,求這個(gè)六面體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出以下四個(gè)結(jié)論:
①過點(diǎn),在兩軸上的截距相等的直線方程是;
②若是等差數(shù)列的前n項(xiàng)和,則;
③在中,若,則是等腰三角形;
④已知,,且,則的最大值是2.
其中正確的結(jié)論是________(寫出所有正確結(jié)論的番號).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(且)是定義在上的奇函數(shù).
(Ⅰ)求實(shí)數(shù)的值;
(Ⅱ)判斷并用定義證明的單調(diào)性;
(Ⅲ)若,且成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校將5名插班生甲、乙、丙、丁、戊編入3個(gè)班級,每班至少1人,則不同的安排方案共有( )
A.150種B.120種C.240種D.540種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“三個(gè)臭皮匠,賽過諸葛亮”,這是我們常說的口頭禪,主要是說集體智慧的強(qiáng)大. 假設(shè)李某智商較高,他獨(dú)自一人解決項(xiàng)目M的概率為;同時(shí),有個(gè)水平相同的人也在研究項(xiàng)目M,他們各自獨(dú)立地解決項(xiàng)目M的概率都是.現(xiàn)在李某單獨(dú)研究項(xiàng)目M,且這個(gè)人組成的團(tuán)隊(duì)也同時(shí)研究項(xiàng)目M,設(shè)這個(gè)人團(tuán)隊(duì)解決項(xiàng)目M的概率為,若,則的最小值是( )
A. 3B. 4C. 5D. 6
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某景區(qū)的各景點(diǎn)從2009年取消門票實(shí)行免費(fèi)開放后,旅游的人數(shù)不斷地增加,不僅帶動了該市淡季的旅游,而且優(yōu)化了旅游產(chǎn)業(yè)的結(jié)構(gòu),促進(jìn)了該市旅游向“觀光、休閑、會展”三輪驅(qū)動的理想結(jié)構(gòu)快速轉(zhuǎn)變.下表是從2009年至2018年,該景點(diǎn)的旅游人數(shù)(萬人)與年份的數(shù)據(jù):
第年 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
旅游人數(shù)(萬人) | 300 | 283 | 321 | 345 | 372 | 435 | 486 | 527 | 622 | 800 |
該景點(diǎn)為了預(yù)測2021年的旅游人數(shù),建立了與的兩個(gè)回歸模型:
模型①:由最小二乘法公式求得與的線性回歸方程;
模型②:由散點(diǎn)圖的樣本點(diǎn)分布,可以認(rèn)為樣本點(diǎn)集中在曲線的附近.
(1)根據(jù)表中數(shù)據(jù),求模型②的回歸方程.(精確到個(gè)位,精確到0.01).
(2)根據(jù)下列表中的數(shù)據(jù),比較兩種模型的相關(guān)指數(shù),并選擇擬合精度更高、更可靠的模型,預(yù)測2021年該景區(qū)的旅游人數(shù)(單位:萬人,精確到個(gè)位).
回歸方程 | ① | ② |
30407 | 14607 |
參考公式、參考數(shù)據(jù)及說明:
①對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘法估計(jì)分別為.②刻畫回歸效果的相關(guān)指數(shù);③參考數(shù)據(jù):,.
5.5 | 449 | 6.05 | 83 | 4195 | 9.00 |
表中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某制造商月生產(chǎn)了一批乒乓球,隨機(jī)抽樣個(gè)進(jìn)行檢查,測得每個(gè)球的直徑(單位:mm),將數(shù)據(jù)分組如下表
分組 | 頻數(shù) | 頻率 |
| 10 | |
20 | ||
50 | ||
20 | ||
合計(jì) | 100 |
(1)請?jiān)谏媳碇醒a(bǔ)充完成頻率分布表(結(jié)果保留兩位小數(shù)),并在上圖中畫出頻率分布直方圖;
(2)統(tǒng)計(jì)方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點(diǎn)值(例如區(qū)間的中點(diǎn)值是)作為代表.據(jù)此估計(jì)這批乒乓球直徑的平均值(結(jié)果保留兩位小數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知圓,三個(gè)點(diǎn),B、C均在圓上,
(1)求該圓的圓心的坐標(biāo);
(2)若,求直線BC的方程;
(3)設(shè)點(diǎn)滿足四邊形TABC是平行四邊形,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com