【題目】某校將5名插班生甲、乙、丙、丁、戊編入3個班級,每班至少1人,則不同的安排方案共有( )
A.150種B.120種C.240種D.540種
【答案】A
【解析】
根據(jù)題意,分2步先將5名插班生分為3組,有2種分組方法,①分為3、1、1的三組,②分為2、2、1的三組,由組合數(shù)公式可得其分組方法數(shù)目,由分類計數(shù)原理將其相加可得分組的情況數(shù)目,第二步,將分好的三組對應(yīng)3個不同的班級,由排列數(shù)公式可得其對應(yīng)方法數(shù)目,由分步計數(shù)原理計算可得選項.
由題意可知,可分以下兩種情況討論,①5名插班生分成:, ,1三組;②5名插班生分成:,,三組,
當(dāng)5名插班生分成:, ,1三組時,共有種方案;
當(dāng)5名插班生分成:,,三組時,共有種方案;
所以,共有種不同的安排方案.
故選:A.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線的參數(shù)方程為(為參數(shù)),當(dāng)時,曲線上對應(yīng)的點為.以原點為極點,以軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(I)求曲線的普通方程和曲線的直角坐標(biāo)方程;
(II)設(shè)曲線與的公共點為,,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有10名乒乓球選手進行單循環(huán)賽.比賽結(jié)果顯示,沒有和局,且任意5人中既有1人勝其余4人,又有1人負(fù)其余4人.則恰好勝了兩場的選手有______名.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線,點為的焦點,過的直線交于,兩點.
(1)設(shè),在的準(zhǔn)線上的射影分別為,,線段的中點為,證明:.
(2)在軸上是否存在一點,使得直線,的斜率之和為定值?若存在,求出點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線與拋物線交于,兩點,且.
(1)求的方程;
(2)試問:在軸的正半軸上是否存在一點,使得的外心在上?若存在,求的坐標(biāo);若不存在,請說明理由..
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市舉辦數(shù)學(xué)知識競賽活動,共5000名學(xué)生參加,競賽分為初試和復(fù)試,復(fù)試環(huán)節(jié)共3道題,其中2道單選題,1道多選題,得分規(guī)則如下:參賽學(xué)生每答對一道單選題得2分,答錯得O分,答對多選題得3分,答錯得0分,答完3道題后的得分之和為參賽學(xué)生的復(fù)試成績.
(1)通過分析可以認(rèn)為學(xué)生初試成績服從正態(tài)分布,其中,,試估計初試成績不低于90分的人數(shù);
(2)已知小強已通過初試,他在復(fù)試中單選題的正答率為,多選題的正答率為,且每道題回答正確與否互不影響.記小強復(fù)試成績?yōu)?/span>,求的分布列及數(shù)學(xué)期望.
附:,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)有兩個極值點,且不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:(x﹣a)2+(y﹣2)2=4(a>0)及直線l:x﹣y+3=0.當(dāng)直線l被圓C截得的弦長為時,求
(Ⅰ)a的值;
(Ⅱ)求過點(3,5)并與圓C相切的切線方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com