F
1、F
2是定點,|F
1F
2|=6,動點M滿足|MF
1|+|MF
2|=8,則點M的軌跡是( )
試題分析:因為F1、F2是定點,|F1F2|=6,動點M滿足|MF1|+|MF2|=8,且|MF1|+|MF2|>|F1F2|,所以,點M的軌跡是橢圓,選C。
點評:簡單題,要全面了解橢圓的定義,其中限制條件|MF1|+|MF2|>|F1F2|要特別注意。
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
的右焦點為
,
為橢圓的上頂點,
為坐標原點,且兩焦點和短軸的兩端構(gòu)成邊長為
的正方形.
(1)求橢圓的標準方程;
(2)是否存在直線
交與橢圓于
,
,且使
,使得
為
的垂心,若存在,求出
點的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,已知橢圓
的左焦點為
,過點
的直線交橢圓于
兩點,線段
的中點為
,
的中垂線與
軸和
軸分別交于
兩點.
(1)若點
的橫坐標為
,求直線
的斜率;
(2)記△
的面積為
,△
(
為原點)的面積為
.試問:是否存在直線
,使得
?說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
,直線
l為圓
的一條切線,且經(jīng)過橢圓
C的右焦點,直線
l的傾斜角為
,記橢圓
C的離心率為
e.
(1)求
e的值;
(2)試判定原點關(guān)于
l的對稱點是否在橢圓上,并說明理由。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
橢圓
的焦距是
,焦點坐標為
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
的離心率為
,且過點
,
為其右焦點.
(1)求橢圓
的方程;
(2)設(shè)過點
的直線
與橢圓相交于
、
兩點(點
在
兩點之間),若
與
的面積相等,試求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
橢圓
的左、右焦點分別為F
1、F
2,過橢圓的右焦點F
2作一條直線l交橢圓與P、Q兩點,則△F
1PQ內(nèi)切圓面積的最大值是
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題12分)已知
,且點A
和點B
都在橢圓
內(nèi)部,
(1)請列出有序數(shù)組
的所有可能結(jié)果;
(2)記“使得
成立的
”為事件A,求事件A發(fā)生的概率。
查看答案和解析>>