如圖,已知橢圓
的左焦點(diǎn)為
,過點(diǎn)
的直線交橢圓于
兩點(diǎn),線段
的中點(diǎn)為
,
的中垂線與
軸和
軸分別交于
兩點(diǎn).
(1)若點(diǎn)
的橫坐標(biāo)為
,求直線
的斜率;
(2)記△
的面積為
,△
(
為原點(diǎn))的面積為
.試問:是否存在直線
,使得
?說明理由.
試題分析:(Ⅰ)解:依題意,直線
的斜率存在,設(shè)其方程為
.
將其代入
,整理得
.
設(shè)
,
,所以
. 3分
故點(diǎn)
的橫坐標(biāo)為
.依題意,得
,
解得
. 5分
(Ⅱ)解:假設(shè)存在直線
,使得
,顯然直線
不能與
軸垂直.
由(Ⅰ)可得
. 6分
因?yàn)?
,所以
,
解得
, 即
. 8分
因?yàn)?△
∽△
,所以
.
所以
, 10分
整理得
.
因?yàn)榇朔匠虩o解,所以不存在直線
,使得
. 12分
點(diǎn)評(píng):直線與橢圓相交時(shí)常聯(lián)立方程借助于方程根與系數(shù)的關(guān)系整理化簡,此類題目計(jì)算量較大要求學(xué)生具有較高的數(shù)據(jù)處理能力
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
橢圓的左、右焦點(diǎn)分別為
和
,且橢圓過點(diǎn)
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)過點(diǎn)
作不與
軸垂直的直線
交該橢圓于
兩點(diǎn),
為橢圓的左頂點(diǎn),試判斷
的大小是否為定值,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
橢圓
的左、右焦點(diǎn)分別為F
1、F
2,P是橢圓上的一點(diǎn),
,且
,垂足為
,若四邊形
為平行四邊形,則橢圓的離心率的取值范圍是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
:
的右焦點(diǎn)
在圓
上,直線
交橢圓于
、
兩點(diǎn).
(1)求橢圓
的方程;
(2)若
(
為坐標(biāo)原點(diǎn)),求
的值;
(3)設(shè)點(diǎn)
關(guān)于
軸的對(duì)稱點(diǎn)為
(
與
不重合),且直線
與
軸交于點(diǎn)
,試問
的面積是否存在最大值?若存在,求出這個(gè)最大值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
橢圓
的焦點(diǎn)為
,點(diǎn)
在橢圓上,且線段
的中點(diǎn)恰好在
軸上,
,則
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知
為橢圓
的左右頂點(diǎn),在長軸
上隨機(jī)任取點(diǎn)
,過
作垂直于
軸的直線交橢圓于點(diǎn)
,則使
的概率為
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
的中心在原點(diǎn),焦點(diǎn)在
軸上,離心率為
,它的一個(gè)頂點(diǎn)恰好是拋物線
的焦點(diǎn).
(Ⅰ)求橢圓
的方程;
(Ⅱ)過點(diǎn)
的直線
與橢圓
相切
,直線
與
軸交于點(diǎn)
,當(dāng)
為何值時(shí)
的面積有最小值?并求出最小值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
F
1、F
2是定點(diǎn),|F
1F
2|=6,動(dòng)點(diǎn)M滿足|MF
1|+|MF
2|=8,則點(diǎn)M的軌跡是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知
、
是橢圓
的左、右焦點(diǎn),弦
過
,則
的周長為
.
查看答案和解析>>