下列對象中能構(gòu)成集合的有( 。
①我國著名的數(shù)學(xué)家;
②我國古代的四大發(fā)明;
③蒙自一中的部分教師;
④不超過10的自然數(shù);
⑤平面上,到線段AB兩端點距離相等的所有點.
A、1個B、2個C、3個D、4個
考點:中國古代數(shù)學(xué)瑰寶
專題:集合
分析:①不能構(gòu)成集合,因為“著名”二字含義不確定;
②我國古代的四大發(fā)明可以構(gòu)成集合;
③不能構(gòu)成集合,因為“部分”二字含義不確定;
④不超過10的自然數(shù)可以構(gòu)成集合;
⑤可以構(gòu)成集合,即為線段AB的垂直平分線.
解答: 解:①我國著名的數(shù)學(xué)家,不能構(gòu)成集合,因為“著名”二字含義不確定;
②我國古代的四大發(fā)明可以構(gòu)成集合;
③蒙自一中的部分教師,不能構(gòu)成集合,因為“部分”二字含義不確定;
④不超過10的自然數(shù)可以構(gòu)成集合;
⑤平面上,到線段AB兩端點距離相等的所有點,可以構(gòu)成集合,即為線段AB的垂直平分線.
綜上可知:只有②④⑤正確.
故選:C.
點評:本題考查了構(gòu)成集合的特點,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

滿足線性約束條件
5x+3y≤15
y≤x+1
x-5y≥3
的目標(biāo)函數(shù)z=3x+2y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列類比推理的結(jié)論正確的是(  )
①類比“實數(shù)a,b,若a2+b2=0,則a=b=0”,得到猜想“復(fù)數(shù)z1,z2,若z12+z22=0,則z1=z2=0”;
②類比“平面內(nèi),同垂直于一直線的兩直線相互平行”,得到猜想“空間中,同垂直于一直線的兩直線相互平行”;
③類比“設(shè)等差數(shù)列{an}的前n項和為Sn,則S4,S8-S4,S12-S8成等差數(shù)列”,得到猜想“設(shè)等比數(shù)列{bn}的前n項積為Tn,則T4,
T8
T4
,
T12
T8
成等比數(shù)列”;
④類比“實數(shù)a,b,有(a+b)2=a2+2ab+b2”,得到猜想“向量”有(
a
+
b
2=
a
2+2
a
b
+
b
2
A、③④B、①④C、②③④D、②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理)某幾何體的三視圖如圖所示,若該幾何體的外接球的表面積為3π,
則正視圖中a=( 。
A、
2
B、
3
2
C、2
D、π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l:x+y-3=0分別與函數(shù)y=3x和y=log3x的交點為A(x1,y1)、B(x2,y2),則2(y1+y2)=( 。
A、4B、6C、8D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)的圖象在點M(3,f(3))處的切線方程是y=
1
3
x+
2
3
,則f(3)+f′(3)的值為( 。
A、1B、2C、3D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式組
x2-x-2≥0
x2+x-2≤0
的解集用數(shù)軸表示為( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中是假命題的是( 。
①過平面外一點有且只有一條直線與該平面垂直;
②過平面外一點有且只有一條直線與該平面平行;
③如果兩個平行平面和第三個平面相交,那么所得的兩條交線平行.
A、①B、②C、③D、④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)z=
3+4i
1+2i
的共軛復(fù)數(shù)
z
=(  )
A、
11
5
-
2
5
i
B、
2
5
-
11
5
i
C、
11
5
+
2
5
i
D、
2
5
+
11
5
i

查看答案和解析>>

同步練習(xí)冊答案