滿足線性約束條件
5x+3y≤15
y≤x+1
x-5y≥3
的目標函數(shù)z=3x+2y的最大值為
 
考點:簡單線性規(guī)劃
專題:不等式的解法及應用
分析:作出不等式組對于的平面區(qū)域,利用數(shù)形結(jié)合即可得到結(jié)論.
解答: 解:作出不等式組對于的平面區(qū)域如圖:
由z=3x+2y,則y=-
3
2
x+
z
2
,
平移直線y=-
3
2
x+
z
2
,由圖象可知當直線y=-
3
2
x+
z
2
,
經(jīng)過點A(3,0)時,直線y=-
3
2
x+
z
2
的截距最大,此時z最大,
此時zmax=3×3+0=9,
故答案為:9
點評:本題主要考查線性規(guī)劃的應用,利用z的幾何意義,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=plnx+
q
x2
(p>0),若x=
2
2
時,f(x)有極小值
1
2
(1-ln2),
(1)求實數(shù)p,q的取值;
(2)若數(shù)列{an}中,an=f(n),求證:數(shù)列{an}的前n項和Sn
n
4

(3)設函數(shù)g(x)=alnx+bx+c(a>0),若g(x)有極值且極值為t,則t與
4ac-b2
4a
是否具有確定的大小關(guān)系?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

完成下列進位制之間的轉(zhuǎn)化:1101(2)=
 
(10)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

f(x)=
-
2
x
,x<0
3+log2x,x>0
,則 f(f(-1))=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

O為坐標原點,F(xiàn)為拋物線C:y2=4
2
x的焦點,P為C上一點,若|PF|=4
2
,則△POF的面積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知α的終邊經(jīng)過點(3a-9,a+2),且sinα>0,cosα≤0,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lgx+x-10的零點在區(qū)間(k,k+1)上,k∈Z,則k=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題中真命題的個數(shù)為(  )
①?x0∈R,使得sinx+cosx=2.
②銳角△ABC中,恒有tanAtanB>1.
③?x∈R,不等式ax2-ax-1<0成立的充要條件為:-4<a<0.
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列對象中能構(gòu)成集合的有( 。
①我國著名的數(shù)學家;
②我國古代的四大發(fā)明;
③蒙自一中的部分教師;
④不超過10的自然數(shù);
⑤平面上,到線段AB兩端點距離相等的所有點.
A、1個B、2個C、3個D、4個

查看答案和解析>>

同步練習冊答案