(本小題滿分12分)函數(shù)的定義域為(為實數(shù)).
(1)當時,求函數(shù)的值域;
(2)若函數(shù)在定義域上是減函數(shù),求的取值范圍;
(3)函數(shù)在上的最大值及最小值,并求出函數(shù)取最值時的值.
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分26分)
已知函數(shù).
(1)當時,求函數(shù)的最大值和最小值;
(2)求實數(shù)的取值范圍,使在區(qū)間上是單調(diào)函數(shù),并指出相應(yīng)的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)
(1)當時,求函數(shù)的定義域、值域及單調(diào)區(qū)間;
(2)對于,不等式恒成立,求正實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
提高過江大橋的車輛通行能力可改善整個城市的交通狀況.在一般情況下,大橋上的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數(shù).當橋上的車流密度達到200輛/千米時,造成堵塞,此時車流速度為0;當車流密度不超過20輛/千米時,車流速度為60千米/小時.研究表明:當20≤x≤200時,車流速度v是車流密度x的一次函數(shù).當0≤x≤200時,求函數(shù)v(x)的表達式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(12分)已知函數(shù)滿足,且在上單調(diào)遞增.
(1)求的解析式;
(2)若在區(qū)間上的最小值為,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分14分)已知函數(shù)=+有如下性質(zhì):如果常數(shù)>0,那么該
函數(shù)在0,上是減函數(shù),在,+∞上是增函數(shù).
(1)如果函數(shù)=+(>0)的值域為6,+∞,求的值;
(2)研究函數(shù)=+(常數(shù)>0)在定義域內(nèi)的單調(diào)性,并說明理由;
(3)對函數(shù)=+和=+(常數(shù)>0)作出推廣,使它們都是你所推廣的
函數(shù)的特例.
(4)(理科生做)研究推廣后的函數(shù)的單調(diào)性(只須寫出結(jié)論,不必證明),并求函數(shù)=+(是正整數(shù))在區(qū)間[,2]上的最大值和最小值(可利用你
的研究結(jié)論).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題12分) 二次函數(shù)f(x)滿足且f(0)=1.
(Ⅰ)求f(x)的解析式;
(Ⅱ)在區(qū)間上求y= f(x)的值域。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)已知奇函數(shù)的定義域為,且在上是增函數(shù), 是否存在實數(shù)使得, 對一切
都成立?若存在,求出實數(shù)的取值范圍;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com