若函數(shù)y=cosωx(ω>0)的圖象向右平移
π
6
個單位后與函數(shù)y=sinωx的圖象重合,則ω的值可能是( 。
A、
1
2
B、1
C、3
D、4
考點:函數(shù)y=Asin(ωx+φ)的圖象變換
專題:三角函數(shù)的圖像與性質(zhì)
分析:把函數(shù)f(x)=cosωx的圖象向右平移
π
6
個單位,求出變換后得到的函數(shù)解析式,利用誘導(dǎo)公式化簡,結(jié)合所給的選項得出結(jié)論.
解答: 解:把函數(shù)f(x)=cosωx的圖象向右平移
π
6
個單位,得到函數(shù)y=cosω(x-
π
6
)=cos(ωx-
π
6
ω) 的圖象.
而y=sinωx=cos(ωx-
π
2
),
-
π
6
ω=-
π
2
+2kπ,k∈z.
∴ω=3-12k,k∈z,
觀察所給的選項,只有ω=3.滿足條件,
故選:C.
點評:本題主要考查誘導(dǎo)公式的應(yīng)用,利用了y=Asin(ωx+∅)的圖象變換規(guī)律,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={(x,y)|y=x2+mx+2},B={(x,y)|y=x+1,x>0},若A∩B≠∅,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
1-x
定義域為M,g(x)=ex值域為N,則M∩N=( 。
A、[0,1]
B、(0,1]
C、(0,+∞)
D、[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<
π
2
)的部分圖象如圖所示,則y=f(x+
π
6
)取得最小值時x的集合為(  )
A、{x|x=kπ-
π
6
,k∈Z }
B、{x|x=kπ-
π
3
,k∈Z }
C、{x|x=2kπ-
π
6
,k∈Z }
D、{x|x=2kπ-
π
3
,k∈Z }

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,O為坐標(biāo)原點,點A(2,0),將向量
OA
繞點O按逆時針方向旋轉(zhuǎn)
π
3
后得向量
OB
,若向量
a
滿足|
a
-
OA
-
OB
|=1
,則|
a
|
的最大值是( 。
A、2
3
-1
B、2
3
+1
C、3
D、
6
+
2
+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線x2-y2=1的焦點與橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的焦點重合,且該橢圓的長軸長為4,M、N是橢圓上的動點.
(1)求橢圓標(biāo)準(zhǔn)方程;
(2)設(shè)動點P滿足:
OP
=
OM
+2
ON
,直線OM與ON的斜率之積為-
1
2
,求證:存在定點F1,F(xiàn)2,使得|PF1|+|PF2|為定值,并求出F1,F(xiàn)2的坐標(biāo);
(3)若M在第一象限,且點M,N關(guān)于原點對稱,點M在x軸的射影為A,連接NA并延長交橢圓于點B,求證:以NB為直徑的圓經(jīng)過點M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=f(x)經(jīng)過點(1,20),其導(dǎo)函數(shù)f′(x)=4x-22.?dāng)?shù)列{an}的前n項和為Sn,點(n,Sn)(n∈N+)均在函數(shù)y=f(x)的圖象上.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)數(shù)列{|an|}前n項和為Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,△ABC的三條角平分線交于點O,過點O作OE⊥BC于點E,求證:∠BOD=∠COE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖甲,圓O的直徑AB=2,圓上C,D兩點在直徑AB的異側(cè)且∠CAB=
π
4
,∠DAB=
π
3
,沿直徑AB折起,使得兩個半圓所在的平面垂直(如圖乙),F(xiàn)為BC的中點.根據(jù)圖乙解答下列問題:

(1)求三棱錐C-BOD的體積;
(2)求二面角C-AD-B的余弦值;
(3)在弧BD上是否存在點G,使得GF∥平面ACD?若存在,請確定點G位置,并求出直線AG與平面AG與平面ACD所成角的正弦值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案