【題目】圓臺的上、下底面半徑分別為、,母線長,從圓臺母線的中點拉一條繩子繞圓臺側(cè)面轉(zhuǎn)到在下底面,求:

1繩子的最短長度;

2在繩子最短時,上底圓周上的點到繩子的最短距離

【答案】1;2

【解析

試題分析:1由題意需要畫出圓臺的側(cè)面展開圖,并還原成圓錐展開的扇形,則所求的最短距離是平面圖形兩點連線2根據(jù)條件求出扇形的圓心角以及半徑長,在求出最短的距離

試題解析:1畫出圓臺的側(cè)面展開圖,并還原成圓錐展開的扇形,且設扇形的圓心為

有圖得:所求的最短距離是,設,圓心角是,則由題意知,

①, ②,由①②解得,,,

,則故繩子最短的長度為:

2垂直于交于,是頂點的最短距離,

與弧的最短距離,,

即上底面圓周上各點繩子的最短距離是

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)對現(xiàn)有設備進行了改造,為了了解設備改造后的效果,現(xiàn)從設備改造前后生產(chǎn)的大量產(chǎn)品中各抽取了100件產(chǎn)品作為樣本,檢測其質(zhì)量指標值,若質(zhì)量指標值在內(nèi),則該產(chǎn)品視為合格品,否則視為不合格品.圖1是設備改造前的樣本的頻率分布直方圖,表1是設備改造后的樣本的頻數(shù)分布表.

(1)完成列聯(lián)表,并判斷是否有99%的把握認為該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標值與設備改造有關:

設備改造前

設備改造后

合計

合格品

不合格品

合計

(2)根據(jù)圖1和表1提供的數(shù)據(jù),試從產(chǎn)品合格率的角度對改造前后設備的優(yōu)劣進行比較;

(3)企業(yè)將不合格品全部銷毀后,根據(jù)客戶需求對合格品進行等級細分,質(zhì)量指標值落在內(nèi)的定為一等品,每件售價180元;質(zhì)量指標值落在內(nèi)的定為二等品,每件售價150元;其他的合格品定為三等品,每件售價120元.根據(jù)頻數(shù)分布表1的數(shù)據(jù),用該組樣本中一等品、二等品、三等品各自在合格品中的頻率代替從所有合格產(chǎn)品中抽到一件相應等級產(chǎn)品的概率.現(xiàn)有一名顧客隨機購買兩件產(chǎn)品,設其支付的費用為(單位:元),求的分布列和數(shù)學期望.

附:

0.150

0.100

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某旅游景點有50輛自行車供游客租賃使用,管理這些自行車的費用是每日115元。根據(jù)經(jīng)驗,若每輛自行車的日租金不超過6元,則自行車可以全部租出;若超過6元,則每提高1元,租不出去的自行車就增加3.規(guī)定:每輛自行車的日租金不超過20元,每輛自行車的日租金元只取整數(shù),并要求出租所有自行車一日的總收入必須超過一日的管理費用,用表示出租所有自行車的日凈收入(即一日中出租所以自行車的總收入減去管理費用后的所得).

1)求函數(shù)的解析式及定義域;

2)試問日凈收入最多時每輛自行車的日租金應定為多少元?日凈收入最多為多少元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱, 平面, , .

1)證明:平面平面

2)若四棱柱的體積為,求該三棱柱的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)當時,討論函數(shù)的單調(diào)性;

(2)若不等式對于任意成立,求正實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面是菱形,的中點,的中點.證明:直線平面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對任意,,,給出下列命題:

①“”是“”的充要條件;

②“是無理數(shù)”是“是無理數(shù)”的充要條件;

③“”是“”的必要條件,

④“”是“”的充分條件.

其中真命題的個數(shù)為().

A.1

B.2

C.3

D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設橢圓的右焦點為,過點作與軸垂直的直線交橢圓于兩點(點在第一象限),過橢圓的左頂點和上頂點的直線與直線交于,且滿足,為坐標原點,,,則該橢圓的離心率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分14分)如圖,三角形所在的平面與長方形所在的平面垂直,,

(1)證明:平面;

(2)證明:;

(3)求點到平面的距離.

查看答案和解析>>

同步練習冊答案