【題目】在直角坐標系中,直線
的參數方程為
(
為參數).以坐標原點
為極點,
軸的非負半軸建立極坐標系,點
的極坐標
,曲線
的極坐標方程為
.
(1)求直線的普通方程和曲線
的直角坐標方程;
(2)若為曲線
上的動點,求
中點
到直線
的距離最小值.
科目:高中數學 來源: 題型:
【題目】某創(chuàng)業(yè)者計劃在某旅游景區(qū)附近租賃一套農房發(fā)展成特色“農家樂”,為了確定未來發(fā)展方向此創(chuàng)業(yè)者對該景區(qū)附近五家“農家樂”跟蹤調查了100天,這五家“農家樂的收費標準互不相同得到的統(tǒng)計數據如下表,x為收費標準(單位:元/日),t為入住天數(單位:天),以頻率作為各自的“入住率”,收費標準x與“入住率”y的散點圖如圖
x | 100 | 150 | 200 | 300 | 450 |
t | 90 | 65 | 45 | 30 | 20 |
(1)若從以上五家“農家樂”中隨機抽取兩家深人調查,記為“入住率超過0.6的農家樂的個數,求
的概率分布列
(2)z=lnx,由散點圖判斷與
哪個更合適于此模型(給出判斷即可不必說明理由)?并根據你的判斷結果求回歸方程(a,
的結果精確到0.1)
(3)根據第(2)問所求的回歸方程,試估計收費標準為多少時,100天銷售額L最大?(100天銷售額L=100×入住率×收費標準x)
參考數據,
,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知,
,若
,則對此不等式描敘正
確的是( )
A. 若,則至少存在一個以
為邊長的等邊三角形
B. 若,則對任意滿足不等式的
都存在以
為邊長的三角形
C. 若,則對任意滿足不等式的
都存在以
為邊長的三角形
D. 若,則對滿足不等式的
不存在以
為邊長的直角三角形
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某研究機構為了解某學校學生使用手機的情況,在該校隨機抽取了60名學生(其中男、女生人數之比為2:1)進行問卷調查.進行統(tǒng)計后將這60名學生按男、女分為兩組,再將每組學生每天使用手機的時間(單位:分鐘)分為5組,得到如圖所示的頻率分布直方圖(所抽取的學生每天使用手機的時間均不超過50分鐘).
(1)求出女生組頻率分布直方圖中的值;
(2)求抽取的60名學生中每天使用手機時間不少于30分鐘的學生人數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設f(x)="xln" x–ax2+(2a–1)x,aR.
(Ⅰ)令g(x)=f'(x),求g(x)的單調區(qū)間;
(Ⅱ)已知f(x)在x=1處取得極大值.求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖為一正方體的平面展開圖,在這個正方體中,有以下結論:①,②CF與EN所成的角為
,③
//MN ,④二面角
的大小為
,其中正確的個數是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】新高考改革后,國家只統(tǒng)一考試數學和語文,英語學科改為參加等級考試,每年考兩次,分別放在每個學年的上、下學期,物理、化學、生物、地理、歷史、政治這六科則以該省的省會考成績?yōu)闇?/span>.考生從中選擇三科成績,參加大學相關院系的錄取.
(1)若英語等級考試成績有一次為優(yōu),即可達到某211院校的錄取要求.假設某個學生參加每次等級考試事件是獨立的,且該生英語等級考試成績?yōu)閮?yōu)的概率都是,求該生在高二上學期的英語等級考試成績才為優(yōu)的概率;
(2)據預測,要想報考該211院校的相關院系,省會考的成績至少在90分以上,才有可能被該校錄取.假設該生在省會考六科的成績,考到90分以上概率都是,設該生在省會考時考到90分以上的科目數為
,求
的分布列及數學期望.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com