【題目】設(shè)f(x)="xln" x–ax2+(2a–1)x,aR.
(Ⅰ)令g(x)=f'(x),求g(x)的單調(diào)區(qū)間;
(Ⅱ)已知f(x)在x=1處取得極大值.求實數(shù)a的取值范圍.
【答案】(Ⅰ)當(dāng)時,函數(shù)單調(diào)遞增區(qū)間為,當(dāng)時,函數(shù)單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為; (Ⅱ)
【解析】試題分析:(Ⅰ)先求出,然后討論當(dāng)時,當(dāng)時的兩種情況即得.
(Ⅱ)分以下情況討論:①當(dāng)時,②當(dāng)時,③當(dāng)時,④當(dāng)時,綜合即得.
試題解析:(Ⅰ)由
可得,
則,
當(dāng)時,
時, ,函數(shù)單調(diào)遞增;
當(dāng)時,
時, ,函數(shù)單調(diào)遞增,
時, ,函數(shù)單調(diào)遞減.
所以當(dāng)時, 單調(diào)遞增區(qū)間為;
當(dāng)時,函數(shù)單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.
(Ⅱ)由(Ⅰ)知, .
①當(dāng)時, , 單調(diào)遞減.
所以當(dāng)時, , 單調(diào)遞減.
當(dāng)時, , 單調(diào)遞增.
所以在x=1處取得極小值,不合題意.
②當(dāng)時, ,由(Ⅰ)知在內(nèi)單調(diào)遞增,
可得當(dāng)當(dāng)時, , 時, ,
所以在(0,1)內(nèi)單調(diào)遞減,在內(nèi)單調(diào)遞增,
所以在x=1處取得極小值,不合題意.
③當(dāng)時,即時, 在(0,1)內(nèi)單調(diào)遞增,在內(nèi)單調(diào)遞減,
所以當(dāng)時, , 單調(diào)遞減,不合題意.
④當(dāng)時,即,當(dāng)時, , 單調(diào)遞增,
當(dāng)時, , 單調(diào)遞減,
所以f(x)在x=1處取得極大值,合題意.
綜上可知,實數(shù)a的取值范圍為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,橢圓的左右頂點(diǎn)分別是,為直線上一點(diǎn)(點(diǎn)在軸的上方),直線與橢圓的另一個交點(diǎn)為,直線與橢圓的另一個交點(diǎn)為.
(1)若的面積是的面積的,求直線的方程;
(2)設(shè)直線與直線的斜率分別為,求證:為定值;
(3)若的延長線交直線于點(diǎn),求線段長度的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四面體ABCD中,△ABC是以BC為斜邊的等腰直角三角形,△BCD是邊長為2的正三角形.
(Ⅰ)當(dāng)AD為多長時,?
(Ⅱ)當(dāng)二面角B﹣AC﹣D為時,求AD的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市有一直角梯形綠地ABCD,其中∠ABC=∠BAD=90°,AD=DC=2km,BC=1km.現(xiàn)過邊界CD上的點(diǎn)E處鋪設(shè)一條直的灌溉水管EF,將綠地分成面積相等的兩部分.
(1)如圖①,若E為CD的中點(diǎn),F(xiàn)在邊界AB上,求灌溉水管EF的長度;
(2)如圖②,若F在邊界AD上,求灌溉水管EF的最短長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校隨機(jī)調(diào)查80名學(xué)生,以研究學(xué)生愛好羽毛球運(yùn)動與性別的關(guān)系,得到下面的列聯(lián)表:
(1)將此樣本的頻率視為總體的概率,隨機(jī)調(diào)查本校的3名學(xué)生,設(shè)這3人中愛好羽毛球運(yùn)動的人數(shù)為,求的分布列和數(shù)學(xué)期望;
(2)根據(jù)表3中數(shù)據(jù),能否認(rèn)為愛好羽毛球運(yùn)動與性別有關(guān)?
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=﹣(x﹣2m)(x+m+3)(其中m<﹣1),g(x)=2x﹣2.
(1)若命題“l(fā)og2g(x)<1”是真命題,求x的取值范圍;
g(x)<0.若p∧q是真命題,求m的取值范圍.
(2)設(shè)命題p:x∈(1,+∞),f(x)<0或g(x)<0;命題q:x∈(﹣1,0),f(x
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市100戶居民的月平均用電量(單位:度),以,,,,,,分組的頻率分布直方圖如圖.
(1)求直方圖中的值;
(2)求月平均用電量的平均數(shù)、眾數(shù)和中位數(shù);
(3)在月平均用電量為,,,,的四組用戶中,用分層抽樣的方法抽取11戶居民,則月平均用電量在的用戶中應(yīng)抽取多少戶?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若函數(shù)在區(qū)間上是減函數(shù),求實數(shù)的取值范圍;
(2)當(dāng)時,函數(shù)圖象上的點(diǎn)都在所表示的平面區(qū)域內(nèi),求實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了政府對過熱的房地產(chǎn)市場進(jìn)行調(diào)控決策,統(tǒng)計部門對城市人和農(nóng)村人進(jìn)行了買房心理預(yù)測調(diào)研,用簡單隨機(jī)抽樣的方法抽取了110人進(jìn)行統(tǒng)計,得到如下列聯(lián)表:
買房 | 不買房 | 糾結(jié) | |
城市人 | 5 | 15 | |
農(nóng)村人 | 20 | 10 |
已知樣本中城市人數(shù)與農(nóng)村人數(shù)之比是3:8.
(Ⅰ)分別求樣本中城市人中的不買房人數(shù)和農(nóng)村人中的糾結(jié)人數(shù);
(Ⅱ)從參與調(diào)研的城市人中用分層抽樣方法抽取6人,進(jìn)一步統(tǒng)計城市人的某項收入指標(biāo),假設(shè)一個買房人的指標(biāo)算作3,一個糾結(jié)人的指標(biāo)算作2,一個不買房人的指標(biāo)算作1,現(xiàn)在從這6人中再隨機(jī)選取3人,令X=再抽取3人指標(biāo)之和,求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com