函數(shù)f(x)在定義域R內(nèi)可導(dǎo),若f(x)=f(4-x),當(dāng)x∈(2,+∞)時(shí),
f′(x)
2-x
>0,設(shè)A=f(0),B=f(1),C=f(5),則A、B、C的大小關(guān)系為
 
(用“<”連結(jié))
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:根據(jù)條件判斷函數(shù)的單調(diào)性,即可得到結(jié)論.
解答: 解:∵f(x)=f(4-x),
∴函數(shù)f(x)關(guān)于x=2對(duì)稱,
當(dāng)x∈(2,+∞)時(shí),
f′(x)
2-x
>0,
∴當(dāng)x>2時(shí),f′(x)<0,此時(shí)函數(shù)單調(diào)遞減.
則根據(jù)對(duì)稱可知當(dāng)x<2時(shí),此時(shí)函數(shù)單調(diào)遞增,
f(5)=f(4-5)=f(-1),
∵1>0>-1,
∴f(-1)<f(0)<f(1),
即C<A<B,
故答案為:C<A<B
點(diǎn)評(píng):本題主要考查函數(shù)值的大小比較,根據(jù)函數(shù)單調(diào)性和導(dǎo)數(shù)之間的關(guān)系是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若m是2和8的等比中項(xiàng),且2m<1,則拋物線y2=mx的準(zhǔn)線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

平面向量
a
=(1,2),
b
=(-3,2),則|
a
+
b
|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于函數(shù)f(x),若存在常數(shù)T和S(T>0,S≠0),使當(dāng)x取定義域內(nèi)的每一個(gè)值時(shí),都有f(x+T)=f(x)+S成立,則函數(shù)f(x)稱為“類周期函數(shù)”,T叫做“類周期”.設(shè)g(x)是定義在R上以1為周期的周期函數(shù)h(x)=2x+g(x),則
(1)h(x)是類周期函數(shù),當(dāng)類周期T=1時(shí),S=
 
;
(2)若當(dāng)x∈[3,4]時(shí),h(x)的值域?yàn)閇2,8],則當(dāng)x∈[0,1]時(shí),h(x)的值域?yàn)?div id="yand7t6" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知一列數(shù)1,1,2,3,5,…,根據(jù)其規(guī)律,下一個(gè)數(shù)應(yīng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

通過(guò)拋物線y2=8x的焦點(diǎn)作一條傾角為
π
4
的直線,交拋物線于A、B兩點(diǎn),弦AB長(zhǎng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為
x=sinθ+cosθ
y=sin2θ
(θ為參數(shù)),若以直角坐標(biāo)系xOy的O點(diǎn)為極點(diǎn),x軸正方向?yàn)闃O軸,且長(zhǎng)度單位相同,建立極坐標(biāo)系,得直線l的極坐標(biāo)方程為2ρcos(θ+
π
6
)=1.則直線l與曲線C交點(diǎn)的極坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

cos24°cos36°-sin24°sin36°的值等于( 。
A、
1
2
B、-
1
2
C、
3
2
D、cos12°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
,
b
滿足
a
b
=0,|
a
|=1,|
b
|=2,則|
a
-
b
|=( 。
A、0
B、1
C、2
D、
5

查看答案和解析>>

同步練習(xí)冊(cè)答案