(1)已知x、y都是正實數(shù),求證:x3+y3≥x2y+xy2
(2)設(shè)函數(shù)f(x)=|x+1|+|x-5|,x∈R,如果關(guān)于x的不等式f(x)≥a-(x-2)2在R上恒成立,求實數(shù)a的取值范圍.
考點:函數(shù)恒成立問題,不等式的證明
專題:綜合題,函數(shù)的性質(zhì)及應(yīng)用,不等式的解法及應(yīng)用
分析:(1)用比較法證明不等式,(x3+y3 )-(x2y+xy2)=(x+y)(x-y)2,分析符號可得結(jié)論.
(2)轉(zhuǎn)化函數(shù)為分段函數(shù)求出最小值,然后求出實數(shù)a的取值范圍.
解答: 證明:(1)∵(x3+y3 )-(x2y+xy2)=x2 (x-y)+y2(y-x)=(x-y)(x2-y2 )
=(x+y)(x-y)2
∵x,y都是正實數(shù),∴(x-y)2≥0,(x+y)>0,∴(x+y)(x-y)2≥0,
∴x3+y3≥x2y+xy2
(2)函數(shù)f(x)=|x+1|+|x-5|,x∈R,
關(guān)于x的不等式f(x)≥a-(x-2)2,轉(zhuǎn)化為:|x+1|+|x-5|+(x-2)2≥a,在R上恒成立,
令g(x)=|x+1|+|x-5|+(x-2)2=
x2-6x+8,x<-1
x2-4x+10,-1≤x<5
x2-2x,5≤x
,
x=2時函數(shù)取得最小值為:6,
∴實數(shù)a的取值范圍:(-∞,6].
點評:本題考查用比較法證明不等式,基本不等式的應(yīng)用,將式子變形是證明的關(guān)鍵.函數(shù)恒成立問題的應(yīng)用,考查計算能力以及轉(zhuǎn)化思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

從邊長為1的正方形的中心和頂點這五點中,隨機(等可能)取兩點,則該兩點間的距離為
2
2
的概率是( 。
A、
1
3
B、
1
2
C、
2
5
D、
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖可能是下列哪個函數(shù)的圖象( 。
A、y=2x-x2-1
B、y=
2xsinx
4x+1
C、y=(x2-2x)ex
D、y=
x
lnx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線:
sinθ
a
x+
cosθ
b
y=1(a,b為給定的正常數(shù),θ為參數(shù),θ∈[0,2π))構(gòu)成的集合為S,給出下列命題:
①當θ=
π
4
時,S中直線的斜率為
b
a
;
②S中所有直線均經(jīng)過一個定點;
③當a=b時,存在某個定點,該定點到S中的所有直線的距離均相等;
④當a>b時,S中的兩條平行直線間的距離的最小值為2b;
⑤S中的所有直線可覆蓋整個平面.
其中正確的是
 
(寫出所有正確命題的編號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:x2=2py(p>0)上一點A(m,4)到其焦點F的距離為
17
4

(1)求P與m的值;
(2)若直線l過焦點F交拋物線于P,Q兩點,且|PQ|=5,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知過點(0,4),斜率為-1的直線l與拋物線y2=2px(p>0)交于A、B兩點.O為坐標原點,|AB|=4
10

(1)求拋物線的解析式;
(2)求證:OA⊥OB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線f(x)=ax-ex(a>0).
(Ⅰ)求曲線在點(0,f(0))處的切線;
(Ⅱ)若存在實數(shù)x0使得f(x0)≥0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

記max{a,b}為a和b兩數(shù)中的較大數(shù).設(shè)函數(shù)f(x)和g(x)的定義域都是R,則“f(x)和g(x)都是偶函數(shù)”是“函數(shù)F(x)=max{f(x),g(x)}為偶函數(shù)”的
 
條件.(在“充分不必要”“必要不充分”“充分必要”和“既不充分也不必要”中選填一個)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在等腰直角三角形ABC中,在斜邊AB上找一點M,則AM<AC的概率為( 。
A、
2
2
B、
3
4
C、
2
3
D、
1
2

查看答案和解析>>

同步練習(xí)冊答案