11.若復(fù)數(shù)(a+i)(1+i)在復(fù)平面上所對應(yīng)的點在實軸上,則實數(shù)a=-1.

分析 利用復(fù)數(shù)的運算法則、幾何意義即可得出.

解答 解:復(fù)數(shù)(a+i)(1+i)=a-1+(a+1)i在復(fù)平面上所對應(yīng)的點(a-1,a+1)在實軸上,則實數(shù)a滿足a+1=0,
解得a=-1.
故答案為:-1.

點評 本題考查了復(fù)數(shù)的運算法則、幾何意義,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.某中學(xué)有籃球社,吉他社,傳統(tǒng)文化社,動漫社等多個社團,其中傳統(tǒng)文化社借端午節(jié)來臨之際舉行包粽子送祝福活動,隨機調(diào)查了高三50名男女生對粽子口味的喜好,統(tǒng)計如下表:
  甜味粽 咸味粽 南國風(fēng)味
 棗子粽豆沙粽  玫瑰粽 蛋黃粽 豬肉粽 什錦粽
 男生 4 3 1 10 4 3
 女生 5 5 5 13
(1)按以上統(tǒng)計數(shù)據(jù)填寫下面的2×2列聯(lián)表,并運用獨立性檢驗思想,判斷是否有97.5%把握認(rèn)為甜味粽和咸味粽的喜好與性別有關(guān)系?
  甜味粽咸味粽  合計
 男生   
 女生   
 合計   
參考公式及臨界值表如下:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
(2)從被調(diào)查的50人中對玫瑰粽和什錦粽喜好的同學(xué)按照分層抽樣的方法抽取4名同學(xué)按順序進行深度調(diào)查,則前兩位接受調(diào)查的都是喜好玫瑰粽同學(xué)的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.$\int_{-1}^1{(\sqrt{1-{x^2}}+sinx)dx}$=$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若直線2ax-by+2=0(a,b∈R)始終平分圓x2+y2+2x-4y+1=0的周長,則ab的最大值是$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知l、m表示直線,α、β、γ表示平面,下列條件中能推出結(jié)論正確的選項是( 。
條件:①l?α,α∥β;②α∥β,β∥γ;③l⊥α,α∥β;④l⊥m,l⊥α,m⊥β.
結(jié)論:a:l⊥β;b:α⊥β;c:l∥β;d:α∥γ.
A.①⇒c、②⇒d、③⇒a、④⇒bB.①⇒a、②⇒d、③⇒c、④⇒bC.①⇒b、②⇒d、③⇒a、④⇒cD.①⇒c、②⇒b、③⇒a、④⇒d

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若命題“對任意$x∈[{-\frac{π}{3},\frac{π}{4}}]$,tanx<m恒成立”是假命題,則實數(shù)m的取值范圍是m≤1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-x+1,}&{x<1}\\{{2}^{x}-2,}&{x≥1}\end{array}\right.$,g(x)=$\frac{1}{x}$,若對任意x∈[m,+∞)(m>0),總存在兩個x0∈[0,2],使得f(x0)=g(x),則實數(shù)m的取值范圍是( 。
A.[1,+∞)B.(0,1]C.[$\frac{1}{2}$,+∞)D.(0,$\frac{1}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)復(fù)數(shù)z滿足zi=1-2i,則z的虛部等于(  )
A.-2iB.-iC.-1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,在四邊形ABCD中,∠BAD=90°,AD∥BC,PE⊥平面ABCD,E在AD上,F(xiàn)D∥PE,BC=AE=PE,DE=DF=$\frac{1}{2}$BC.
(Ⅰ)求證:AB⊥EF;
(Ⅱ)求證:CF∥平面PAB.

查看答案和解析>>

同步練習(xí)冊答案