1.如圖,在四邊形ABCD中,∠BAD=90°,AD∥BC,PE⊥平面ABCD,E在AD上,F(xiàn)D∥PE,BC=AE=PE,DE=DF=$\frac{1}{2}$BC.
(Ⅰ)求證:AB⊥EF;
(Ⅱ)求證:CF∥平面PAB.

分析 (Ⅰ)由線面垂直的性質(zhì)可證PE⊥AB,由已知可證AB⊥AD,利用線面垂直的判定定理即可證明AB⊥平面PAD,由線面垂直的性質(zhì)可證AB⊥EF.
(Ⅱ)由已知可得∠PAE=∠FED=45°,可證AP∥EF,連接CE,又證明CE∥AB,進而可證平面PAB∥平面EFC,利用面面平行的性質(zhì)可證CF∥平面PAB.

解答 證明:(Ⅰ)∵PE⊥平面ABCD,AB?平面ABCD,
∴PE⊥AB,
又∵∠BAD=90°,AD∩PE=E,
∴AB⊥平面PAD,
∵EF?平面PAD,
∴AB⊥EF.
(Ⅱ)∵PE⊥平面ABCD,E在AD上,F(xiàn)D∥PE,BC=AE=PE,DE=DF=$\frac{1}{2}$BC.
∴∠PAE=∠FED=45°,
∴AP∥EF,
連接CE,又∵AD∥BC,BC=AE,
∴CE∥AB,且AP∩AB=A,EF∩CE=E,
∴平面PAB∥平面EFC,
又∵CF?平面EFC,
∴CF∥平面PAB.

點評 本題主要考查了線面垂直的性質(zhì),線面垂直的判定定理,線面垂直的性質(zhì),面面平行的判定和性質(zhì)定理的應用,考查了空間想象能力和推理論證能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

11.若復數(shù)(a+i)(1+i)在復平面上所對應的點在實軸上,則實數(shù)a=-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.某工程設備租賃公司為了調(diào)查A,B兩種挖掘機的出租情況,現(xiàn)隨機抽取了這兩種挖掘機各100臺,分別統(tǒng)計了每臺挖掘機在一個星期內(nèi)的出租天數(shù),統(tǒng)計數(shù)據(jù)如下表:
A型車挖掘機
出租天數(shù)1234567
車輛數(shù)51030351532
B型車挖掘機
出租天數(shù)1234567
車輛數(shù)1420201615105
(Ⅰ)根據(jù)這個星期的統(tǒng)計數(shù)據(jù),將頻率視為概率,求該公司一臺A型挖掘機,一臺B型挖掘機一周內(nèi)合計出租天數(shù)恰好為4天的概率;
(Ⅱ)如果A,B兩種挖掘機每臺每天出租獲得的利潤相同,該公司需要從A,B兩種挖掘機中購買一臺,請你根據(jù)所學的統(tǒng)計知識,給出建議應該購買哪一種類型,并說明你的理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知實數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{y≤-\frac{5}{2}x+9}\\{x≥2}\\{y≥-1}\end{array}\right.$,則z=$\frac{y+2}{x+2}$的最大值是$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知m、n是兩條不重合的直線,α、β是兩個不重合的平面,下列命題中正確的是( 。
A.若m∥n,m∥α,則n∥αB.若m、n?α,m∥β,n∥β,則α∥β
C.若m⊥α,n∥α,則m⊥nD.若m⊥α,α⊥β,m∥n,則n∥β

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.若點A($\sqrt{3}$,1)的直線l1:$\sqrt{3}$x+ay-2=0與過點B($\sqrt{3}$,4)的直線l2交于點C,若△ABC是以AB為底邊的等腰三角形,則l2的方程為( 。
A.$\sqrt{3}$x+y-7=0B.$\sqrt{3}$x-y+7=0C.x+$\sqrt{3}$y-7=0D.x-$\sqrt{3}$y-7=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知F為雙曲線C:$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1左焦點,過拋物線y2=20x的焦點的直線交雙曲線C的右支于P,Q兩點,若線段PQ的長等于雙曲線C虛軸長的3倍,則△PQF的周長為(  )
A.40B.42C.44D.52

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知函數(shù)f′(x)的圖象如圖所示,其中f′(x)是f(x)的導函數(shù),則f(x)的極值點的個數(shù)為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.如果A(1,2),B(3,m),C(7,m+6)三點共線,則實數(shù)m的值為5.

查看答案和解析>>

同步練習冊答案