某工廠生產(chǎn)甲、乙兩種產(chǎn)品,已知生產(chǎn)每噸甲、乙兩種產(chǎn)品所需煤、電力、勞動力、獲得利潤及每天資源限額(最大供應(yīng)量)如下表所示:
            產(chǎn)品
消耗量
資源
甲產(chǎn)品
(每噸)
乙產(chǎn)品
(每噸)
資源限額
(每天)
煤(t)
9
4
360
電力(kw·h)
4
5
200
勞力(個)
3
10
300
利潤(萬元)
6
12
 
  
問:每天生產(chǎn)甲、乙兩種產(chǎn)品各多少噸,獲得利潤總額最大?
生產(chǎn)甲種產(chǎn)品20t,乙種產(chǎn)品24t,才能使此工廠獲得最大利潤
設(shè)此工廠應(yīng)分別生產(chǎn)甲、乙兩種產(chǎn)品x噸y噸,獲得利潤z萬元…………1分
依題意可得約束條件:…………………………5分
利潤目標(biāo)函數(shù)………………………………8分
如圖,作出可行域,作直線向右上方平移至l1位置,直線經(jīng)過可行域上的點M,且與原點距離最大,此時取最大值!10分
解方程組………………………………12分
所以生產(chǎn)甲種產(chǎn)品20t,乙種產(chǎn)品24t,才能使此工廠獲得最大利潤!14分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知滿足約束條件的最小值為—6,則常數(shù)   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如右下圖所示,陰影部分表示的平面區(qū)域可用二元一次不等式組來表示的是(  )

A.                          B
C.                          D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知的最小值是        

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

.某人上午7時,乘摩托艇以勻速海里/時(4≤≤20)從港出發(fā)到距50海里的港去,然后乘汽車以千米/時(30≤≤100)自港向距300千米的市駛?cè),?yīng)該在同一天下午4至9點到達(dá)市.設(shè)汽車、摩托艇所需的時間分別是小時.
(1)寫出所滿足的條件,并在所給的平面直角坐標(biāo)系內(nèi),作出表示范圍的圖形;
(2)如果已知所需的經(jīng)費(元),那么分別是多少時走得最經(jīng)濟(jì)?此時需花費多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè),,則滿足條件,的動點P的變化范圍(圖中陰影部分含邊界)是                                               (   )
 
A.                 B.                C.                  D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某廠擬生產(chǎn)甲、乙兩種適銷產(chǎn)品,每件利潤分別為300、500元,甲、乙產(chǎn)品的部件各自在A、B兩個車間分別生產(chǎn),每件甲、乙產(chǎn)品的部件分別需要A、B車間的生產(chǎn)能力1、2工時;兩種產(chǎn)品的部件最后都要在C車間裝配,裝配每件甲、乙產(chǎn)品分別需要3、4工時.A、B、C三個車間每天可用于生產(chǎn)這兩種產(chǎn)品的工時分別為8、12、36,應(yīng)如何安排生產(chǎn)這兩種產(chǎn)品才能獲利最多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某紡紗廠生產(chǎn)甲、乙兩種棉紗,已知生產(chǎn)甲種棉紗1噸需耗一級子棉2噸、二級子棉1噸;生產(chǎn)乙種棉紗需耗一級子棉1噸、二級子棉2噸,每1噸甲種棉紗的利潤是600元,每1噸乙種棉紗的利潤是900元,工廠在生產(chǎn)這兩種棉紗的計劃中要求消耗一級子棉不超過300噸、二級子棉不超過250噸.甲、乙兩種棉紗應(yīng)各生產(chǎn)多少(精確到噸),能使利潤總額最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

二元一次不等式組
4x+3y+8≥0
x≤0
y≤0
表示的平面區(qū)域的面積是______.

查看答案和解析>>

同步練習(xí)冊答案