在四邊形ABCD中,若
AB
+
CD
=0,
AC
BD
=0,則四邊形為( 。
A、平行四邊形B、矩形
C、等腰梯形D、菱形
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:平面向量及應(yīng)用
分析:
AB
+
CD
=0,
AC
BD
=0,可得
AB
=
DC
AC
BD
.可知:四邊形ABCD是平行四邊形、對(duì)角線相互垂直,即可得出.
解答: 解:∵
AB
+
CD
=0,
AC
BD
=0,
AB
=
DC
,
AC
BD

∴四邊形ABCD是菱形.
故選:D.
點(diǎn)評(píng):本題考查了向量的平行四邊形法則、菱形的判定定理,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

橢圓
x2
a2
+
y2
b2
=1的長(zhǎng)軸長(zhǎng)為6,右焦點(diǎn)F是拋物線y2=8x的焦點(diǎn),則該橢圓的離心率等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

把函數(shù)y=sin(2x+
π
4
)的圖象向右平移
π
8
個(gè)單位,再把所得圖象上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的
1
2
,則所得圖象的函數(shù)解析式是( 。
A、y=sin(4x+
3
8
π)
B、y=sin(4x+
π
8
C、y=sin4x
D、y=sinx

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是R上的可導(dǎo)函數(shù),且f(x)的圖象是連續(xù)不斷的,當(dāng)x≠0時(shí),有f′(x)=
f(x)
x
>0,則函數(shù)F(x)=xf(x)+
1
x
的零點(diǎn)個(gè)數(shù)是(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列函數(shù)中,定義域是R且為增函數(shù)的是( 。
A、y=e-x
B、y=x
C、y=lnx
D、y=-
1
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
(2a-1)sinx+8a,x∈(-
π
2
,0)
2ax,x∈[0,+∞)
在(-
π
2
,+∞)上單調(diào)遞減,那么實(shí)數(shù)a的取值范圍是( 。
A、(
1
2
,1)
B、(0,
1
4
]
C、[
1
4
,1)
D、[
1
4
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(8+
1
2
x,x),
b
=(x+1,2),其中x>0,若
a
b
,則x的值為( 。
A、8B、4C、2D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)平面封閉區(qū)域內(nèi)任意兩點(diǎn)距離的最大值稱為該區(qū)域的“直徑”,封閉區(qū)域邊界曲線的長(zhǎng)度與區(qū)域直徑之比稱為區(qū)域的“周率”,下面四個(gè)平面區(qū)域(陰影部分)的周率從左到右依次記為τ1,τ2,τ3,τ4,則下列關(guān)系中正確的為( 。
A、τ1>τ4>τ3
B、τ3>τ1>τ2
C、τ4>τ2>τ3
D、τ3>τ4>τ1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為了解72名學(xué)生的學(xué)習(xí)情況,采用系統(tǒng)抽樣的方法,從中抽取容量為8的樣本,則分段的間隔為( 。
A、9B、8C、10D、7

查看答案和解析>>

同步練習(xí)冊(cè)答案