已知p∈R,a>b>0比較下列各題中兩個代數(shù)式值的大。
(1)(2p+1)(p-3)與(p-6)(p+3)+10;
(2)
a2-b2
a2+b2
a-b
a+b
考點:不等式比較大小
專題:不等式的解法及應(yīng)用
分析:分別根據(jù)作差法比較大小即可.
解答: 解:(1)∵(2p+1)(p-3)-[(p-6)(p+3)+10]=p2-2p+5=(p-1)2+4>0,
∴(2p+1)(p-3)>(p-6)(p+3)+10;
(2)
a2-b2
a2+b2
-
a-b
a+b
=(1-
2b2
a2+b2
)-(1-
2b
a+b
)=
2ab(a-b)
(a+b)(a2+b2)
,
∵a>b>0,
∴2ab>0,a-b>0,a+b>0,a2+b2>0,
2ab(a-b)
(a+b)(a2+b2)
>0,
a2-b2
a2+b2
a-b
a+b
點評:本題主要考查了最差法比較兩個式子的大小關(guān)系,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=|2x-1|.
(I)不等式f(x)≤a的解集為{x|0≤x≤1},求a值;
(Ⅱ)若g(x)=
1
f(x)+f(x-1)+m
的定義域為R,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax+
a-1
x
-lnx.
(1)當(dāng)a≤
1
2
時,試討論函數(shù)f(x)的單調(diào)性;
(2)證明:對任意的n∈N+,有
ln1
1
+
ln2
2
+…+
ln(n-1)
n-1
+
lnn
n
n2
2(n+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|3x2+x-2<0,x∈R},集合B={x|
4x-3
x-3
>0,x∈R}
(1)求集合A和B;   
(2)求∁UA∩B與A∪∁UB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在公差不為零的等差數(shù)列{an}中,a1,a2,a4成等比數(shù)列,且a1+a2+a4=7
(1)求數(shù)列{an}的通項公式an
(2)求數(shù)列{
3nan
2n-1
}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}為遞增的等比數(shù)列,且{a1,a3,a5}⊆{0,1,3,4,16}.
(1)求數(shù)列{an}的通項公式;
(2)是否存在等差數(shù)列{bn},使得a1bn+a2bn-1+a3bn-2+…+anb1=2n+1-n-2對一切n∈N*都成立?若存在,求出bn;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=lnx-ax+
1-a
x
-1.
(Ⅰ)當(dāng)a=1時,求曲線f(x)在x=1處的切線方程;
(Ⅱ)討論函數(shù)f(x)的單調(diào)性;
(Ⅲ)當(dāng)a=
1
3
時,設(shè)函數(shù)g(x)=x2-2bx-
5
12
,若對于?x1∈[1,2],?x2∈[0,1],使f(x1)=g(x2)成立,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若復(fù)數(shù)
a+i
2i
的實部與虛部相等,則實數(shù)a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=logax,(a>0且a≠1)滿足f(9)=2,則f(3)=
 

查看答案和解析>>

同步練習(xí)冊答案