用一塊鋼錠燒鑄一個(gè)厚度均勻,且表面積為2m2的正四棱錐形有蓋容器(如下圖)。設(shè)容器高為m,蓋子邊長(zhǎng)為m,

(1)求關(guān)于的解析式;
(2)設(shè)容器的容積為V m3,則當(dāng)h為何值時(shí),V最大? 并求出V的最大值(求解本題時(shí),不計(jì)容器厚度).

(1);(2).

解析試題分析:(1)先用正四棱錐的高和底面邊長(zhǎng)把正四棱錐的表面積表示出來(lái),然后化簡(jiǎn)得結(jié)果;(2)由(1)結(jié)果列出體積關(guān)于的表達(dá)式,先利用重要不等式求的最小值,即可得得最大值.
試題解析:(1)由題意知側(cè)面三角形的高為,
.
(2)由(1)知,則,當(dāng)且僅當(dāng)有最小值,即.
考點(diǎn):1、正四棱錐的表面積;2、正四棱錐的體積;3、重要不等式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,是一個(gè)矩形花壇,其中AB=4米,AD=3米.現(xiàn)將矩形花壇擴(kuò)建成一個(gè)更大的矩形花園,要求:B在上,D在上,對(duì)角線過(guò)C點(diǎn),且矩形的面積小于64平方米.

(Ⅰ)設(shè)長(zhǎng)為米,矩形的面積為平方米,試用解析式將表示成的函數(shù),并寫出該函數(shù)的定義域;
(Ⅱ)當(dāng)的長(zhǎng)度是多少時(shí),矩形的面積最小?并求最小面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

求值:
(1)
(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)當(dāng),且時(shí),求證: 
(2)是否存在實(shí)數(shù),使得函數(shù)的定義域、值域都是?若存在,則求出的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

求值:
(1)
(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/8e/d/xpk2x1.png" style="vertical-align:middle;" />,且同時(shí)滿足以下三個(gè)條件:①;②對(duì)任意的,都有;③當(dāng)時(shí)總有.
(1)試求的值;
(2)求的最大值;
(3)證明:當(dāng)時(shí),恒有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),如果函數(shù)恰有兩個(gè)不同的極值點(diǎn),,且.
(Ⅰ)證明:;
(Ⅱ)求的最小值,并指出此時(shí)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).
(Ⅰ)若的值域;
(Ⅱ)若存在實(shí)數(shù),當(dāng)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知冪函數(shù)為偶函數(shù),且在區(qū)間上是單調(diào)增函數(shù)
(1)求函數(shù)的解析式;
(2)設(shè)函數(shù),其中.若函數(shù)僅在處有極值,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案