已知函數(shù)f(x)=ex-ax-1(a∈R).
(1)討論f(x)=ex-ax-1(a∈R)的單調(diào)性;
(2)若a=1,求證:當(dāng)x≥0時(shí),f(x)≥f(-x).
(1)解:f′(x)=ex-a.當(dāng)a≤0時(shí),f′(x)≥0恒成立,
當(dāng)a>0時(shí),令f′(x)>0,得x>ln a;令f′(x)<0,得x<ln a.
綜上,當(dāng)a≤0時(shí),f(x)在(-∞,+∞)上單調(diào)遞增;
當(dāng)a>0時(shí),增區(qū)間是(ln a,+∞),減區(qū)間是(-∞,ln a).----------6分
(2)證明:令g(x)=f(x)-f(-x)=ex--2x,g′(x)=ex+e-x-2≥0,
∴g(x)在[0,+∞)上是增函數(shù),∴g(x)≥g(0)=0,
∴f(x)≥f(-x).------------12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
在數(shù)列中,,,設(shè).
(Ⅰ)證明:數(shù)列是等比數(shù)列;
(Ⅱ)求數(shù)列的前項(xiàng)和;
(Ⅲ)若,為數(shù)列的前項(xiàng)和,求不超過(guò)的最大的整數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
給出下列命題:
①已知a,b都是正數(shù),且>,則a<b;
②已知f′(x)是f(x)的導(dǎo)函數(shù),若?x∈R,f′(x)≥0,則f(1)<f(2)一定成立;
③命題“?x∈R,使得x2-2x+1<0”的否命題是真命題;
④“x≤1且y≤1”是“x+y≤2”的充要條件.
其中正確命題的序號(hào)是__________.(把你認(rèn)為正確命題的序號(hào)都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
甲、乙兩位同學(xué)約定晚飯點(diǎn)到點(diǎn)之間在食堂見面,先到之人等后到之人十五分
鐘,則甲、乙兩人能見面的概率為
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com