已知a>1,且函數(shù)y=ax與函數(shù)y=logax的圖象有且僅有一個(gè)公共點(diǎn),則此公共點(diǎn)的坐標(biāo)為
 
考點(diǎn):反函數(shù)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:y=ax與y=logax兩個(gè)函數(shù)互為反函數(shù),它們的圖象關(guān)于y=x對(duì)稱,要使兩個(gè)函數(shù)圖象有且只有一個(gè)公共點(diǎn)時(shí),則它們y=x是兩個(gè)函數(shù)的共同的切線.設(shè)兩個(gè)函數(shù)相切時(shí)的切點(diǎn)坐標(biāo)為M(x0,y0),由于曲線y=ax在M處的切線斜率為1,所以ax0=x0,由此能求出結(jié)果.
解答: 解:∵y=ax與y=logax兩個(gè)函數(shù)互為反函數(shù),它們的圖象關(guān)于y=x對(duì)稱,
∴要使兩個(gè)函數(shù)圖象有且只有一個(gè)公共點(diǎn)時(shí),則它們y=x是兩個(gè)函數(shù)的共同的切線.
設(shè)兩個(gè)函數(shù)相切時(shí)的切點(diǎn)坐標(biāo)為M(x0,y0),由于曲線y=ax在M處的切線斜率為1,
ax0=x0,且函數(shù)y=ax的導(dǎo)數(shù)為y′=f′(x0)=ax0lna=1,
ax0=x0
ax0lna=1
,∴
ax0=x0
1
lna
=x0

a
1
lna
=
1
lna
,兩邊取對(duì)數(shù)得lna 
1
lna
=ln
1
lna
=1,
解得e=
1
lna
,所以lna=
1
e
,即a=e
1
e
,此時(shí)x0=e.
∴y0=x0=e,
∴此公共點(diǎn)的坐標(biāo)為(e,e).
故答案為:(e,e).
點(diǎn)評(píng):本題考查兩函數(shù)的公共點(diǎn)的坐標(biāo)的求法,是中檔題,解題時(shí)要注意y=ax與y=logax兩個(gè)函數(shù)互為反函數(shù),它們的圖象關(guān)于y=x對(duì)稱的性質(zhì)的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)計(jì)求1+2+4+7+…+46的算法,并畫出相應(yīng)的程序框圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有下列四個(gè)命題:
①“若x+y=0,則x,y互為相反數(shù)”的逆命題;
②“全等三角形的面積相等”的否命題;
③“若q≤1,則x2+2x+q=0有實(shí)根”的逆命題;
④“等邊三角形的三個(gè)內(nèi)角相等”的逆否命題;
其中真命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以Rt△ABC的直角邊AB為直徑的圓O交AC邊于點(diǎn)E,點(diǎn)D在BC上,且DE與園O相切,若∠A=36°,則∠BDE=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

1+sinα
1-sinα
-
1-sinα
1+sinα
=-2tanα,則角α的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的方程為
x2
25
+
y2
16
=1,過(guò)右焦點(diǎn)F的直線交橢圓于A、B兩點(diǎn),則
|FA|
|FB|
取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給定映射f:(x,y)→(x+2y,2x-y),在映射f下與(4,3)對(duì)應(yīng)的(x,y)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

空間四邊形ABCD中,AB、BC、CD的中點(diǎn)分別是P、Q、R,且PQ=2,QR=
5
,PR=3,那么異面直線AC和BD所成的角是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x3,x≥1
2x-x2,x<1
,若不等式f(m+1)≥f(tm-1)對(duì)任意m∈[-1,1]恒成立,則實(shí)數(shù)t的取值范圍是( 。
A、[-1,1]∪(1,3]
B、[-1,3]
C、[1,3]
D、(-∞,-1]∪[3,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案