已知橢圓的方程為
x2
25
+
y2
16
=1,過(guò)右焦點(diǎn)F的直線(xiàn)交橢圓于A、B兩點(diǎn),則
|FA|
|FB|
取值范圍為
 
考點(diǎn):橢圓的簡(jiǎn)單性質(zhì)
專(zhuān)題:綜合題,圓錐曲線(xiàn)的定義、性質(zhì)與方程
分析:求出橢圓的方程為
x2
25
+
y2
16
=1,a=5,c=3.根據(jù)橢圓的性質(zhì),|FA|,|FB|的最大值為a+c=8,最小值為a-c=2,即可得出結(jié)論.
解答: 解:∵橢圓的方程為
x2
25
+
y2
16
=1,
∴a=5,c=3.
根據(jù)橢圓的性質(zhì),|FA|、|FB|的最大值為a+c=8,最小值為a-c=2,
|FA|
|FB|
取值范圍為[
1
4
,4].
故答案為:[
1
4
,4].
點(diǎn)評(píng):本題考查橢圓的性質(zhì),考查學(xué)生的十計(jì)算能力,正確運(yùn)用橢圓的性質(zhì)是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直三棱柱ABC-A1B1C1中,∠ACB=90°,2AC=AA1=BC=2,M為AA1的中點(diǎn).
(1)求證直線(xiàn)C1M⊥平面BCM;
(2)求二面角C1-MC-B1的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,函數(shù)f(x)的圖象是折線(xiàn)段ABC,其中點(diǎn)A,B,C的坐標(biāo)分別為(0,4),(2,0),(6,4),則f{f[f(3)]}=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知變量x,y滿(mǎn)足約束條件
x+y-1≤0
3x-y+1≥0
x-y-1≤0
,則z=2x+y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a>1,且函數(shù)y=ax與函數(shù)y=logax的圖象有且僅有一個(gè)公共點(diǎn),則此公共點(diǎn)的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=sinx+
2
sinx
的值域?yàn)?div id="78he0lw" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,并在兩種坐標(biāo)系中取相同的長(zhǎng)度單位,已知直線(xiàn)的極坐標(biāo)方程為θ=
π
4
(ρ∈R),它與圓
x=a+
2
cosα
y=b+
2
sinα
(α為參數(shù))相切,則|a-b|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若x,y滿(mǎn)足約束條件
x-2y+4≥0
2x-y-4≤0
x+y-m≥0
,且z=x-y的最大值為2,則m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)(3,1)和(-1,5)在直線(xiàn)3x-2y+a=0的兩側(cè),則a的取值范圍是( 。
A、a<-7或 a>13
B、-7<a<13
C、a=7 或 a=13
D、-13<a<7

查看答案和解析>>

同步練習(xí)冊(cè)答案