已知函數(shù)f(x)=
x3,x≥1
2x-x2,x<1
,若不等式f(m+1)≥f(tm-1)對任意m∈[-1,1]恒成立,則實(shí)數(shù)t的取值范圍是( 。
A、[-1,1]∪(1,3]
B、[-1,3]
C、[1,3]
D、(-∞,-1]∪[3,+∞)
考點(diǎn):分段函數(shù)的應(yīng)用
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由于函數(shù)f(x)=
x3,x≥1
2x-x2,x<1
在R上單調(diào)遞增,不等式f(m+1)≥f(tm-1)對任意實(shí)數(shù)m∈[-1,1]恒成立,可得不等式m-tm+2≥0對任意實(shí)數(shù)m∈[-1,1]恒成立,令g(m)=(1-t)m+2,則g(-1)≥0且g(1)≥0,
即可求得結(jié)論.
解答: 解:函數(shù)f(x)=
x3,x≥1
2x-x2,x<1
在R上單調(diào)遞增,
∵不等式f(m+1)≥f(tm-1)對任意實(shí)數(shù)m∈[-1,1]恒成立,
∴不等式m-tm+2≥0對任意實(shí)數(shù)m∈[-1,1]恒成立,
∴令g(m)=(1-t)m+2,則g(-1)≥0且g(1)≥0,
即有t-1+2≥0且1-t+2≥0,
∴-1≤t≤3.
故選:B.
點(diǎn)評:本題考查分段函數(shù)的應(yīng)用,考查函數(shù)的單調(diào)性,考查恒成立問題,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a>1,且函數(shù)y=ax與函數(shù)y=logax的圖象有且僅有一個公共點(diǎn),則此公共點(diǎn)的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對兩個變量x和y進(jìn)行回歸分析,得到一組樣本數(shù)據(jù):(x1,y1),(x2,y2),…,(xn,yn),則下列說法中不正確的是( 。
A、由樣本數(shù)據(jù)得到的回歸方程
y
=
b
x+
a
必過樣本點(diǎn)的中心(
.
x
,
.
y
B、殘差平方和越小的模型,擬合的效果越好
C、用相關(guān)指數(shù)R2=1-
n
i=1
(yi-
yi)2
n
i=1
(yi-
.
y
)2
來刻畫回歸效果,R2的值越小,說明模型的擬合效果越好
D、用相關(guān)指數(shù)R2=1-
n
i=1
(yi-
yi)2
n
i=1
(yi-
.
y
)2
來刻畫回歸效果,R2的值越大,說明模型的擬合效果越好

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1,F(xiàn)2是雙曲線C的兩焦點(diǎn),點(diǎn)M在雙曲線上,且∠MF2F1=
π
4
,若|F1F2|=8,|F2M|=
2
,則雙曲線C的實(shí)軸長為( 。
A、2
3
B、4
3
C、2
2
D、4
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=x2-6x-7,則它在[-2,4]上的最大值,最小值分別是( 。
A、9,-15
B、12,-15
C、9,-16
D、9,-12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)(3,1)和(-1,5)在直線3x-2y+a=0的兩側(cè),則a的取值范圍是(  )
A、a<-7或 a>13
B、-7<a<13
C、a=7 或 a=13
D、-13<a<7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理科)梯形ABCD的直觀圖是一個等腰梯形A1B1C1D1,等腰梯形A1B1C1D1的底角為
π
4
且面積為
2
,則梯形ABCD的面積為( 。
A、4
B、2
2
C、2
D、
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個圓錐的正視圖是邊長為4的等邊三角形,則這個圓錐的表面積為( 。
A、4πB、8π
C、12πD、16π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|-1≤x≤2},集合B={x|x≤a},且A?B,則實(shí)數(shù)a的取值范圍是(  )
A、{a|a>2}
B、{a|a<-1}
C、{a|a≤-1}
D、{a|a≥2}

查看答案和解析>>

同步練習(xí)冊答案