解答:
解:(1)∵g(x)=f(x)-x=e
x-x,∴g′(x)=e
x-1,
令g′(x)=e
x-1=0,得:x=0,
當(dāng)x<0時(shí),g′(x)=e
x-1<0,函數(shù)y=g(x)在(-∞,0)上為減函數(shù),
當(dāng)x>0時(shí),g′(x)=e
x-1>0,
函數(shù)y=g(x)在(0,+∞)上為增函數(shù),
∴當(dāng)x=0時(shí),函數(shù)y=g(x)有極小值,極小值為g(0)=1,無極大值.…(3分)
(2)由題意得e
x≥ax+1恒成立,
①當(dāng)x=0時(shí),不等式e
x≤ax+1成立,這時(shí)a∈R;…(4分)
②當(dāng)x>0時(shí),不等式e
x≥ax+1恒成立,即:a
≤恒成立;
由(1)得當(dāng)x>0時(shí),e
x-x>1,∴e
x-1>x,
∴
>1,解得a≤1;…(5分)
③當(dāng)x<0時(shí),不等式e
x≥ax+1恒成立,即a≥
恒成立;
由(1)可得當(dāng)x<0時(shí),e
x-x>1,∴e
x-1>x,∴
<1,∴a≥1,…(7分)
綜上得:a=1.…(8分)
(3)F(x)=f(x)-ax-1=e
x-ax-1,F(xiàn)′(x)=e
x-a,
令F′(x)=e
x-a=0,得x=lna,
當(dāng)x<lna時(shí),F(xiàn)′(x)<0,函數(shù)y=F(x)在(-∞,lna)上為減函數(shù);
當(dāng)x>lna時(shí),F(xiàn)′(x)>0,函數(shù)y=F(x)在(lna,+∞)上為增函數(shù);
∵a>1,lna>0,∴F(lna)<F(0)=0.…(11分)
下證:F(2lna)=a
2-2ala-1>0.令P(a)=a
2-2alna-1,(a>1)
p′(a)=2a-2lna-2=2(a-lna-1).
下面證明:當(dāng)a>1時(shí),a-lna-1>0,
由(1)可得:當(dāng)x>0時(shí),e
x-x>1,即:e
x>x+1,
兩邊取對(duì)數(shù)得:
x>ln(x+1),令a=x+1>1,即得:a-1>lna,
從而a-lna-1>0,p′(a)=2a-2lna-2=2(a-lna-1)>0,
P(a)=a
2-2alna-1在(1,+∞)為增函數(shù),P(a)=a
2-2alna-1>P(1)=0,
即:F(2lna)=a
2-2alna-1>0,…(14分)
∵F(lna)<0,F(xiàn)(2lna)>0,由零點(diǎn)存在定理,
函數(shù)F(x)=f(x)-ax-1在區(qū)間(lna,2lna)必存在一個(gè)零點(diǎn),(15分)
又∵函數(shù)y=F(x)在(lna,+∞)上為增函數(shù),
∴F(x)=f(x)-ax-1在區(qū)間(lna,2lna)上有且僅有一個(gè)零點(diǎn).…(16分)