下列函數(shù)f(x)中,滿足“對(duì)任意的x1,x2∈(0,+∞)時(shí),均有(x1-x2)[f(x1)-f(x2)]>0”的是( 。
A、f(x)=
1
2
B、f(x)=x2-4x+4
C、f(x)=2x
D、f(x)=log 
1
2
x
考點(diǎn):函數(shù)單調(diào)性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用函數(shù)的單調(diào)性的定義結(jié)合基本初等函數(shù)的性質(zhì)即可得出結(jié)論.
解答: 解:∵函數(shù)f(x)中,滿足“對(duì)任意的x1,x2∈(0,+∞)時(shí),均有(x1-x2)[f(x1)-f(x2)]>0”
∴x1-x2與f(x1)-f(x2)的值的正負(fù)號(hào)相同,即有
f(x1)-f(x2)
x1-x2
>0,
∴函數(shù)f(x)在(0,+∞)上單調(diào)遞增,因此可得只有函數(shù)f(x)=2x符合,故C正確;
對(duì)于A為常函數(shù),故錯(cuò)誤;對(duì)于B為二次函數(shù)在(0,+∞)不是單調(diào)函數(shù),故錯(cuò)誤;
對(duì)于D為對(duì)數(shù)函數(shù)是(0,+∞)的遞減函數(shù),故錯(cuò)誤.
故選C.
點(diǎn)評(píng):考查學(xué)生對(duì)函數(shù)單調(diào)性的定義及基本初等函數(shù)的性質(zhì)的掌握運(yùn)用能力,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

O為△ABC的外心,|
AB
|=2,|
AC
|=4,設(shè)
AO
=x
AB
+y
AC
,若x+4y=2,則|
AO
|的值為( 。
A、2
B、2
2
C、4
D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合A={x||x-1|≤2},B={x|y
1
1-2x
},則A∩∁RB=( 。
A、(-1,0)
B、(0,3)
C、[-1,0]
D、[0,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

π
2
-
π
4
|2cos2x-1|dx=( 。
A、
3
2
B、
1
2
C、3
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在復(fù)平面內(nèi),復(fù)數(shù)z=(1+2i)2對(duì)應(yīng)的點(diǎn)位于(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(1,1),
b
=(-2,3),若k
a
-
b
a
垂直,則實(shí)數(shù)k=( 。
A、
1
2
B、-
1
2
C、
5
2
D、-
5
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C:x2+y2+6x+8y+21=0,拋物線y2=8x的準(zhǔn)線為l,設(shè)拋物線上任意一點(diǎn)P到直線l的距離為m,則m+|PC|的最小值為(  )
A、5
B、
41
C、
41
-2
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知α為銳角,sin(α+
π
4
)=
2
10
,則sinα的值是( 。
A、
3
5
B、
7
2
10
C、-
2
10
D、
4
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=axn+1+bxn(x>0),n為正整數(shù),a,b均為常數(shù),曲線y=f(x)在(1,f(1))處的切線方程為x+y-1=0.
(Ⅰ)求a、b值;
(Ⅱ)求函數(shù)f(x)的最大值;
(Ⅲ)證明:對(duì)任意的x∈(0,+∞)都有nf(x)<
1
e
.(e為自然對(duì)數(shù)的底)

查看答案和解析>>

同步練習(xí)冊(cè)答案