已知函數(shù)f(x)=
4(a-3)x+a+
1
2
(x<0)
ax,(x≥0)
,若函數(shù)f(x)的圖象經(jīng)過點(diǎn)(3,
1
8
),則a=
 
;若函數(shù)f(x)滿足對(duì)任意x1≠x2
f(x1)-f(x2)
x1-x2
<0
都有成立,那么實(shí)數(shù)a的取值范圍是
 
分析:函數(shù)f(x)的圖象經(jīng)過點(diǎn)(3,
1
8
),因?yàn)?>0,故a3=
1
8
,可求出a;
函數(shù)f(x)滿足對(duì)任意x1≠x2
f(x1)-f(x2)
x1-x2
<0
,即f(x)為減函數(shù),只要考慮x<0時(shí)的單調(diào)性即可.
解答:解:函數(shù)f(x)的圖象經(jīng)過點(diǎn)(3,
1
8
),因?yàn)?>0,故a3=
1
8
,所以a=
1
2

函數(shù)f(x)滿足對(duì)任意x1≠x2,
f(x1)-f(x2)
x1-x2
<0
,即f(x)為減函數(shù),
x≥0時(shí),f(x)=ax為減函數(shù),則0<a<1,且f(0)=1,
x<0時(shí),f(x)=4(a-3)x+a+
1
2
為減函數(shù),故a-3<0,a<3,且x→0時(shí),f(x)→a+
1
2
≥f(0)=1,所以a≥
1
2

綜上可得:
1
2
≤ a<1

故答案為:
1
2
[
1
2
,1)
點(diǎn)評(píng):本題考查待定系數(shù)法求函數(shù)解析式、分段函數(shù)的單調(diào)性,難度一般.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
4-x2
|x-3|-3
,則它是(  )
A、奇函數(shù)B、偶函數(shù)
C、既奇又偶函數(shù)D、非奇非偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
4-x2(x>0)
2(x=0)
1-2x(x<0)
,
(1)求f(a2+1)(a∈R),f(f(3))的值;
(2)當(dāng)-4≤x<3時(shí),求f(x)取值的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
4•2x+2
2x+1
+x•cosx (-1≤x≤1)
,且f(x)存在最大值M和最小值N,則M、N一定滿足( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
4-x2(x>0)
2(x=0)
1-2x(x<0)
,
(1)畫出函數(shù)f(x)圖象;
(2)求f(a2+1)(a∈R),f(f(3))的值;
(3)當(dāng)-4≤x<3時(shí),求f(x)取值的集合.

查看答案和解析>>

同步練習(xí)冊(cè)答案