設(shè)p:函數(shù)y=loga(x+1)(a>0且a≠1)在(0,+∞)上單調(diào)遞減; q:曲線y=x2+(2a-3)x+1與x軸交于不同的兩點.如果p∧q為假,p∨q為真,求實數(shù)a的取值范圍.
考點:復(fù)合命題的真假
專題:簡易邏輯
分析:先根據(jù)對數(shù)函數(shù)的單調(diào)性,和二次函數(shù)圖象和x軸交點的情況與判別式的關(guān)系即可求出命題p,q下的a的取值范圍.根據(jù)p∧q為假,p∨q為真即可判斷p,q的真假情況,根據(jù)p,q的真假情況即可求出a的取值范圍.
解答: 解:p:∵函數(shù)y=loga(x+1)在(0,+∞)上單調(diào)遞減;
∴0<a<1;
q:曲線y=x2+(2a-3)x+1與x軸交于不同的兩點;
∴△=(2a-3)2-4>0,解得a<
1
2
,或a>
5
2
;
∵p∧q為假,p∨q為真,∴p,q一真一假;
若p真q假,則:0<a<1,且
1
2
≤a≤
5
2
,∴
1
2
≤a<1

若p假q真,則:a>1,且a
1
2
,或a>
5
2
,∴a>
5
2
;
∴實數(shù)a的取值范圍為[
1
2
,1)∪(
5
2
,+∞)
點評:考查對數(shù)函數(shù)的單調(diào)性,二次函數(shù)圖象和x軸交點的情況與判別式△的關(guān)系,p∧q,p∨q的真假和p,q真假的關(guān)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}滿足:a2=5,a4+a7=24,{an}的前n項和為Sn
(Ⅰ)求通項公式{an}及前n項和Sn;
(Ⅱ)令bn=
1
an2-1
(n∈N*),求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知AB=3,AC=6,BC=7,AD是∠BAC平分線.求證:DC=2BD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)的定義域為(0,+∞),對于任意的x>0,y>0,f(
x
y
)=f(x)-f(y)恒成立,且當(dāng)x>1時,f(x)>0.求f(x)在(0,+∞)上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的公差和等比數(shù)列{bn}的公比都是d(d≠1),且a1=b1,a4=b4,a10=b10
(1)求實數(shù)a1和d的值;
(2)若b16=ak+1,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)求
tan39°+tan81°+tan240°
tan39°tan81°
的值;
(2)sin50°(1+
3
sin10°
cos10°
).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩條直線l1:Ax-2y-1=0l2:6x-4y+C=0當(dāng)A和C取什么值時,l1與l2
(1)平行; 
(2)垂直.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有下列四個命題:
①|(zhì)x|≠3⇒x≠3或x≠-3;
②命題“a、b都是偶數(shù),則a+b是偶數(shù)”的逆否命題是“a+b不是偶數(shù),則a、b都不是偶數(shù)”;
③若有命題p:7≥7,q:ln2>0,則p且q是真命題;
④若一個命題的否命題為真,則它的逆命題一定是真.
其中真命題為(  )
A、①④B、②③C、②④D、③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a∈R,則“a=-2”是“直線l1:ax+2y-1=0與直線l2:x+(a+1)y+2=0平行”的( 。
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案