已知兩條直線l1:Ax-2y-1=0l2:6x-4y+C=0當(dāng)A和C取什么值時(shí),l1與l2
(1)平行; 
(2)垂直.
考點(diǎn):直線的一般式方程與直線的平行關(guān)系,直線的一般式方程與直線的性質(zhì)
專題:直線與圓
分析:(1)由l1與l2平行,得
6
A
=
-4
-2
C
-1
,由此能求出結(jié)果.
解得A=3,且C≠-2. 
(2)由l1與l2垂直,得6A+8=0,由此能求出結(jié)果.
解答: 解:(1)∵兩條直線l1:Ax-2y-1=0,l2:6x-4y+C=0,
l1與l2平行,
6
A
=
-4
-2
C
-1
,
解得A=3,且C≠-2. 
(2)∵兩條直線l1:Ax-2y-1=0,l2:6x-4y+C=0,
l1與l2垂直,
∴6A+8=0,解得A=-
4
3
,C∈R.
點(diǎn)評(píng):本題考查實(shí)數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意直線位置關(guān)系的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)兩點(diǎn)(-1,1)和(3,9)的直線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的首項(xiàng)a1=1,公比q=-
1
2
,則數(shù)列{|
1
an
|}的前n項(xiàng)和為( 。
A、2-(
1
2
n-1
B、1+(
1
2
n
C、2n+1
D、2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)p:函數(shù)y=loga(x+1)(a>0且a≠1)在(0,+∞)上單調(diào)遞減; q:曲線y=x2+(2a-3)x+1與x軸交于不同的兩點(diǎn).如果p∧q為假,p∨q為真,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知|
a
|=2,|
b
|=
2
,
a
b
的夾角為45°,若(λ
b
-
a
)⊥
a
,則λ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sinα=
2
3
,α∈(
π
2
,π),cosβ=-
3
5
,β∈(π,
2
),sin(α+β)的值是=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)存在極小值,且極小值點(diǎn)在第四象限,則函數(shù)f′(x)的圖象可能是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)變量u,v有觀測(cè)數(shù)據(jù)(ui,vi)(i=1,2,…,10),得散點(diǎn)圖1;對(duì)變量x,y有觀測(cè)數(shù)據(jù)(xi,yi)(i=1,2,…,10),得散點(diǎn)圖2.由這兩個(gè)散點(diǎn)圖可以判斷(  )
A、變量x與y正相關(guān),u與v正相關(guān)
B、變量x與y正相關(guān),u與v負(fù)相關(guān)
C、變量x與y負(fù)相關(guān),u與v正相關(guān)
D、變量x與y負(fù)相關(guān),u與v負(fù)相關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式x(1+x)(2-x)>0的解集為( 。
A、(-∞,-1)∪(2,+∞)
B、(-1,0)∪(2,+∞)
C、(-∞,-1)∪(0,2)
D、(-1,2)

查看答案和解析>>

同步練習(xí)冊(cè)答案