已知方程sin2x=cos2x,則方程在(π,2π)的解為
 
考點:三角方程
專題:三角函數(shù)的求值
分析:由sin2x=cos2x,可得tan2x=1,由x∈(π,2π),可得2x∈(2π,4π).即可得出.
解答: 解:∵sin2x=cos2x,
∴tan2x=1,
∵x∈(π,2π),∴2x∈(2π,4π).
則方程在(π,2π)的解x=
8
,或
13π
8

故答案為:x=
8
,或
13π
8
點評:本題考查了三角函數(shù)方程的解法,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=-x2+2x+3在區(qū)間(-∞,m]上是增函數(shù),求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知四棱錐A-DBCE中,底面DBCE為平行四邊形,F(xiàn)為AE的中點,求證:AB∥平面DCF.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

隨機寫出兩個小于1的正數(shù)x與y,它們與數(shù)1一起形成一個三元數(shù)組(x,y,1).這樣的三元數(shù)組正好是一個鈍角三角形的三邊的概率是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

平面向量
a
b
中,若
a
=(1,-1),
b
=(cosα,sinα),且
a
b
=1,則向量
b
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

以橢圓9x2+16y2=144的頂點為焦點,且過橢圓焦點的雙曲線方程是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)g(x)=ax2-2ax+1+b(a>0)在區(qū)間[2,3]上有最大值4和最小值1,則a+b的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設動點P(x,y)在區(qū)域Ω:
x≥0
y≥0
x+y≤4
上(含邊界),過點P任意作直線l,設直線l與區(qū)域Ω的公共部分為線段AB,則以AB為直徑的圓的面積的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
2
+y2=1,點P(0,1),則點P到橢圓上點的最大距離為
 

查看答案和解析>>

同步練習冊答案