【題目】如圖,在三棱柱中,底面,,,分別是棱,的中點(diǎn),為棱上的一點(diǎn),且//平面.
(1)求的值;
(2)求證:;
(3)求二面角的余弦值.
【答案】(1);(2)詳見(jiàn)解析;(3)二面角的余弦值為.
【解析】
試題分析:(1)求的值,關(guān)鍵是找在的位置,注意到平面,有線面平行的性質(zhì),可得,由已知為中點(diǎn),由平面幾何知識(shí)可得為中點(diǎn),從而可得的值;(2)求證:,有圖觀察,用傳統(tǒng)方法比較麻煩,而本題由于底面,所以,,又,這樣建立空間坐標(biāo)比較簡(jiǎn)單,故以為原點(diǎn),以分別為軸,建立空間直角坐標(biāo)系,取,可寫(xiě)出個(gè)點(diǎn)坐標(biāo),從而得向量的坐標(biāo),證即可;(3)求二面角的余弦值,由題意可得向量是平面的一個(gè)法向量,只需求出平面的一個(gè)法向量,可設(shè)平面的法向量,利用,即可求出平面的一個(gè)法向量,利用向量的夾角公式即可求出二面角的余弦值.
(1)因?yàn)?/span>平面
又平面,平面平面,
所以. 3分
因?yàn)?/span>為中點(diǎn),且側(cè)面為平行四邊形
所以為中點(diǎn),所以. 4分
(2)因?yàn)?/span>底面,
所以,, 5分
又,
如圖,以為原點(diǎn)建立空間直角坐標(biāo)系,設(shè),則由可得 6分
因?yàn)?/span>分別是的中點(diǎn),
所以. 7分
. 8分
所以,
所以. 9分
(3)設(shè)平面的法向量,則
即 10分
令,則,所以. 11分
由已知可得平面的法向量 11分
所以 13分
由題意知二面角為鈍角,
所以二面角的余弦值為. 14分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知三棱柱ABC﹣A1B1C1中,AA1⊥平面ABC,AC=BC,M,N分別是棱CC1,AB的中點(diǎn).
(1)求證:CN⊥平面ABB1A1;
(2)求證:CN∥平面AMB1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,以為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為, 分別為與軸, 軸的交點(diǎn).
(1)寫(xiě)出的直角坐標(biāo)方程,并求的極坐標(biāo);
(2)設(shè)的中點(diǎn)為,求直線的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù), 為曲線在點(diǎn)處的切線.
(Ⅰ)求的方程.
(Ⅱ)當(dāng)時(shí),證明:除切點(diǎn)之外,曲線在直線的下方.
(Ⅲ)設(shè), , ,且滿足,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), 且.
(1)若曲線在點(diǎn)處的切線垂直于軸,求實(shí)數(shù)的值;
(2)當(dāng)時(shí),求函數(shù)的最小值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)().
(1)若在處取到極值,求的值;
(2)若在上恒成立,求的取值范圍;
(3)求證:當(dāng)時(shí), .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合,其中,由中的元素構(gòu)成兩個(gè)相應(yīng)的集合:
, .
其中是有序數(shù)對(duì),集合和中的元素個(gè)數(shù)分別為和.
若對(duì)于任意的,總有,則稱集合具有性質(zhì).
(Ⅰ)檢驗(yàn)集合與是否具有性質(zhì)并對(duì)其中具有性質(zhì)的集合,寫(xiě)出相應(yīng)的集合和.
(Ⅱ)對(duì)任何具有性質(zhì)的集合,證明.
(Ⅲ)判斷和的大小關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),函數(shù)的導(dǎo)函數(shù)為.
⑴ 若直線與曲線恒相切于同一定點(diǎn),求的方程;
⑵ 若,求證:當(dāng)時(shí), 恒成立;
⑶ 若當(dāng)時(shí), 恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com