【題目】電視傳媒公司為了解某地區(qū)電視觀眾對某類體育節(jié)目的收視情況,隨機抽取了100名觀眾進行調(diào)查.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方圖:

將日均收看該體育節(jié)目時間不低于40分鐘的觀眾稱為“體育迷”.

(1)根據(jù)已知條件完成上面的列聯(lián)表,若按的可靠性要求,并據(jù)此資料,你是否認為“體育迷”與性別有關(guān)?

(2)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量電視觀眾中,采用隨機抽樣方法每次抽取1名觀眾,抽取3次,記被抽取的3名觀眾中的“體育迷”人數(shù)為.若每次抽取的結(jié)果是相互獨立的,求分布列,期望和方差.

附:

【答案】(1)沒有理由(2)見解析

【解析】試題分析:(1)利用頻率分布直方圖,可得各組概率,進一步可填出列聯(lián)表,利用公式求出的值,結(jié)合所給數(shù)據(jù),用獨立性檢驗可得結(jié)果;(2)利用分層抽樣,可確定人中有女,利用古典概型,可得結(jié)果.

試題解析:(1)由頻率分布直方圖可知,在抽取的100人中,“體育迷”有25人,從而列聯(lián)表如下:

非體育迷

體育迷

合計

30

15

45

45

10

55

合計

75

25

100

列聯(lián)表中的數(shù)據(jù)代入公式計算,得

.

因為,所以沒有理由認為“體育迷”與性別有關(guān).

(2)由分層抽樣可知人中男生占,女生占,選人沒有一名女生的概率為,故所求被抽取的2名觀眾中至少有一名女生的概率為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題p:xA,且A={x|a﹣1xa+1},命題q:xB,且B={x|x2﹣4x+3≥0}

(Ⅰ)若A∩B=,A∪B=R,求實數(shù)a的值;

(Ⅱ)若p是q的充分條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某漁船在漁港O的南偏東60°方向,距離漁港約160海里的B處出現(xiàn)險情,此時在漁港的正上方恰好有一架海事巡邏飛機A接到漁船的求救信號,海事巡邏飛機迅速將情況通知了在C處的漁政船并要求其迅速趕往出事地點施救.若海事巡邏飛機測得漁船B的俯角為68.20°,測得漁政船C的俯角為63.43°,且漁政船位于漁船的北偏東60°方向上.

)計算漁政船C與漁港O的距離;

)若漁政船以每小時25海里的速度直線行駛,能否在3小時內(nèi)趕到出事地點?

(參考數(shù)據(jù):sin68.20°≈0.93tan68.20°≈2.50,shin63.43°≈0.90,tan63.43°≈2.00, ≈3.62, ≈3.61

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), .

(Ⅰ)當時,求曲線處的切線方程;

(Ⅱ)當時,討論函數(shù)的單調(diào)性;

(Ⅲ)設(shè)斜率為的直線與函數(shù)的圖象交于 兩點,其中,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市統(tǒng)計局就某地居民的月收入調(diào)查了10 000人,并根據(jù)所得數(shù)據(jù)畫出樣本的頻率分布直方圖如圖所示.(每個分組包括左端點,不包括右端點,如第一組表示[1 000,1 500)。

(1)求居民收入在[2000,3 000)的頻率;

(2)根據(jù)頻率分布直方圖算出樣本數(shù)據(jù)的中位數(shù);

3為了分析居民的收入與年齡、職業(yè)等方面的關(guān)系,必須按月收入再從這10 000人中按分層抽樣方法抽出100人作進一步分析,則月收入在[2 000,3 000)的這段應(yīng)抽取多少人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,曲線的參數(shù)方程為為參數(shù)),在以原點為極點, 軸正半軸為極軸的極坐標系中,直線的極坐標方程為

1)求曲線的普通方程和直線的傾斜角;

2)設(shè)點,直線和曲線交于兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方體,為棱、的中點.

Ⅰ)求證:平面

Ⅱ)求證:平面平面

Ⅲ)若正方體棱長為,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】宋元時期杰出的數(shù)學(xué)家朱世杰在其數(shù)學(xué)巨著《四元玉鑒》卷中茭草形段第一個問題今有茭草六百八十束,欲令落一形埵(同垛)之.問底子(每層三角形邊茭草束數(shù),等價于層數(shù))幾何?中探討了垛枳術(shù)中的落一形垛(落一形即是指頂上1束,下一層3束,再下一層6束,,成三角錐的堆垛,故也稱三角垛,如圖,表示第二層開始的每層茭草束數(shù)),則本問題中三角垛底層茭草總束數(shù)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A、B、C所對應(yīng)的邊為a,b,c
(1)若 ,求A的值;
(2)若 ,且△ABC的面積 ,求sinC的值.

查看答案和解析>>

同步練習(xí)冊答案