【題目】已知向量 ,且 ,f(x)= ﹣2λ| |(λ為常數(shù)),求:
(1) 及| |;
(2)若f(x)的最小值是 ,求實(shí)數(shù)λ的值.

【答案】
(1)

解: ,

,

∴cosx≥0,


(2)

解:f(x)=cos2x﹣4λcosx=2(cosx﹣λ)2﹣1﹣2λ2,

,

∴0≤cosx≤1,

①當(dāng)λ<0時(shí),當(dāng)且僅當(dāng)cosx=0時(shí),f(x)取得最小值﹣1,這與已知矛盾;

②當(dāng)0≤λ≤1,當(dāng)且僅當(dāng)cosx=λ時(shí),f(x)取得最小值﹣1﹣2λ2,

由已知得 ,解得 ;

③當(dāng)λ>1時(shí),當(dāng)且僅當(dāng)cosx=1時(shí),f(x)取得最小值1﹣4λ,

由已知得 ,解得 ,這與λ>1相矛盾、

綜上所述, 為所求.


【解析】(1)根據(jù)所給的向量的坐標(biāo),寫(xiě)出兩個(gè)向量的數(shù)量積,寫(xiě)出數(shù)量積的表示式,利用三角函數(shù)變換,把數(shù)量積整理成最簡(jiǎn)形式,再求兩個(gè)向量和的模長(zhǎng),根據(jù)角的范圍,寫(xiě)出兩個(gè)向量的模長(zhǎng).(2)根據(jù)第一問(wèn)做出的結(jié)果,寫(xiě)出函數(shù)的表達(dá)式,式子中帶有字母系數(shù)λ,把式子整理成關(guān)于cosx的二次函數(shù)形式,結(jié)合λ的取值范圍,寫(xiě)出函數(shù)式的最小值,是它的最小值等于已知量,得到λ的值,把不合題意的舍去.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解三角函數(shù)的最值(函數(shù),當(dāng)時(shí),取得最小值為;當(dāng)時(shí),取得最大值為,則,,).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若直線(xiàn)l1:y=x+a和直線(xiàn)l2:y=x+b將圓(x﹣1)2+(y﹣2)2=8分成長(zhǎng)度相等的四段弧,則a2+b2=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于數(shù)列,定義,

(1),是否存在,使得?請(qǐng)說(shuō)明理由;

(2) , ,求數(shù)列的通項(xiàng)公式;

(3) ,求證:“為等差數(shù)列”的充要條件是“的前4項(xiàng)為等差數(shù)列為等差數(shù)列”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將圓為參數(shù))上的每一點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉?lái)的倍,得到曲線(xiàn)

(1)求出的普通方程;

(2)設(shè)直線(xiàn) 的交點(diǎn)為, ,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,求過(guò)線(xiàn)段的中點(diǎn)且與垂直的直線(xiàn)的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù), .

(Ⅰ)當(dāng)時(shí),求曲線(xiàn)處的切線(xiàn)方程;

(Ⅱ)當(dāng)時(shí),討論函數(shù)的單調(diào)性;

(Ⅲ)設(shè)斜率為的直線(xiàn)與函數(shù)的圖象交于 兩點(diǎn),其中,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)).

(1)若在點(diǎn)處的切線(xiàn)與直線(xiàn)垂直,求實(shí)數(shù)的值;

(2)求函數(shù)的單調(diào)區(qū)間;

(3)討論函數(shù)在區(qū)間上零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為為參數(shù)),在以原點(diǎn)為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)系中,直線(xiàn)的極坐標(biāo)方程為

1)求曲線(xiàn)的普通方程和直線(xiàn)的傾斜角;

2)設(shè)點(diǎn),直線(xiàn)和曲線(xiàn)交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C:+=1(ab0)的離心率為,且過(guò)點(diǎn)(1,).

(I)求橢圓C的方程;

(Ⅱ)設(shè)與圓O:x2+y2=相切的直線(xiàn)l交橢圓C與A,B兩點(diǎn),求OAB面積的最大值,及取得最大值時(shí)直線(xiàn)l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)O為坐標(biāo)原點(diǎn),點(diǎn)P的坐標(biāo)(x﹣2,x﹣y)
(1)在一個(gè)盒子中,放有標(biāo)號(hào)為1,2,3的三張卡片,現(xiàn)從此盒中有放回地先后抽到兩張卡片的標(biāo)號(hào)分別記為x,y,求|OP|的最大值,并求事件“|OP|取到最大值”的概率;
(2)若利用計(jì)算機(jī)隨機(jī)在[0,3]上先后取兩個(gè)數(shù)分別記為x,y,求P點(diǎn)在第一象限的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案