若函數(shù)f(x)=
2x-a,x≤0
lnx,x>0
有兩個不同的零點,則實數(shù)a的取值范圍是
 
考點:根的存在性及根的個數(shù)判斷
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由lnx=0,解得x=1,成立,可知存在x≤0,使2x-a=0成立,從而解實數(shù)a的取值范圍.
解答: 解:令lnx=0,解得x=1,成立,
又∵函數(shù)f(x)=
2x-a,x≤0
lnx,x>0
有兩個不同的零點,
∴存在x≤0,使2x-a=0成立,
即a=2x≤0,
故答案為:(-∞,0].
點評:本題考查了函數(shù)的零點與方程的根之間的關(guān)系,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex+e-x,其中e為自然對數(shù)的底數(shù).
(1)若?x∈(0,+∞),mf(x)≤e-x+m-1,求實數(shù)m的取值范圍;
(2)已知正數(shù)a滿足:?x∈[1,+∞),f(x0)<a(-x03+3x0).試比較ea-1與ae-1大小,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

P為雙曲線x2-
y2
15
=1
右支上一點,M、N分別是圓(x-4)2+y2=4和(x+4)2+y2=1上的點,則|PM|-|PN|的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于連續(xù)不間斷的函數(shù)y=f(x),定義面積函數(shù)y=∫
 
b
a
f(x)為直線x=a,x=b,y=0與y=f(x)圍成的圖形的面積,則∫
 
4
0
x+∫
 
2
0
(2x-4)-∫
 
4
1
log2x的值為( 。
A、6B、8C、9D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=Asin(ωx+φ)(A>0,ω>0)的一段圖象如下,則f(x)的解析式為( 。
A、f(x)=2sin(2x+
3
)
B、f(x)=2sin(2x-
π
3
)
C、f(x)=2sin(2x+
π
3
)
D、f(x)=2sin(2x-
π
6
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1
的一個焦點與圓x2+y2-2x=0的圓心重合,且雙曲線的離心率等于
5
,則該雙曲線的方程為( 。
A、5x2-
5y2
4
=1
B、
x2
5
-
y2
4
=1
C、
y2
5
-
x2
4
=1
D、5y2-
5x2
4
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線的頂點在原點,焦點在y軸上,拋物線上一點M(m,-3)到拋物線焦點的距離為5,
(1)求m的值;
(2)拋物線的方程及準(zhǔn)線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=xlnx,則(  )
A、x=1為f(x)的極大值點
B、x=1為f(x)的極小值點
C、x=
1
e
為f(x)的極大值點
D、x=
1
e
為f(x)的極小值點

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

連續(xù)函數(shù)y=f(x)在點x0取極值是f′(x0)=0的(  )
A、充分條件B、必要條件
C、充要條件D、必要非充分條件

查看答案和解析>>

同步練習(xí)冊答案