【題目】已知函數(shù),(,為自然對數(shù)的底數(shù)).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若對任意在上總存在兩個(gè)不同的,使成立,求的取值范圍.
【答案】(1)當(dāng)時(shí),單調(diào)遞減區(qū)間是;當(dāng)時(shí),的單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是;(2).
【解析】
試題分析: (1)首先求出函數(shù)的導(dǎo)數(shù),然后根據(jù)導(dǎo)數(shù)的正負(fù)解出不等式得到函數(shù)的單調(diào)區(qū)間;(2)求出函數(shù)的導(dǎo)數(shù),由的正負(fù)判斷函數(shù)的單調(diào)性并求出函數(shù)在上的值域,當(dāng)時(shí), 不合題意; 當(dāng)時(shí),判斷極值點(diǎn)與端點(diǎn)e的關(guān)系,分為時(shí),不合題意;時(shí),在上單調(diào)遞減,在上單調(diào)遞增,又在上恒成立, 欲使對任意的在上總存在兩個(gè)不同的,使成立,則需滿足,即.
試題解析:(1),.
1)當(dāng),;
2)當(dāng),令,;
綜上:當(dāng)時(shí),的單調(diào)遞減區(qū)間是;
當(dāng)時(shí),的單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是.
(2)∵,∴,
∴在內(nèi)遞增,在內(nèi)遞減.又∵,,,
∴函數(shù)在內(nèi)的值域?yàn)?/span>.
由,得.
①當(dāng)時(shí),,在上單調(diào)遞減,不合題意;
②當(dāng)時(shí),令,則;令,則.
i)當(dāng),即時(shí),在上單調(diào)遞減,不合題意;
ii)當(dāng),即時(shí),在上單調(diào)遞減,在上單調(diào)遞增.
令,,則,
∴在上單調(diào)遞增,在上單調(diào)遞減;
∴,即在上恒成立.
令,則,設(shè),,則,
∴在內(nèi)單調(diào)遞減,在上單調(diào)遞增,
∴,即,∴,∴,即.
∴當(dāng)時(shí), ,
且在上連續(xù).
欲使對任意的在上總存在兩個(gè)不同的,
使成立,則需滿足,即.
又∵,∴,
∴.綜上所述,.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(為自然對數(shù)的底數(shù)).
(Ⅰ)若函數(shù)有2個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍;
(Ⅱ)若,關(guān)于的不等式在上恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知甲乙兩名籃球運(yùn)動(dòng)員每場比賽得分的原始記錄用如下莖葉圖表示:
(1)按從小到大的順序?qū)懗黾走\(yùn)動(dòng)員的得分;
(2)分別求甲乙運(yùn)動(dòng)員得分的中位數(shù);
(3)估計(jì)乙運(yùn)動(dòng)員在一場比賽中得分落在內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司有一批專業(yè)技術(shù)人員,對他們進(jìn)行年齡狀況和接受教育程度(學(xué)歷)的調(diào)查,其結(jié)果(人數(shù)分布)如表:
(1)用分層抽樣的方法在歲年齡段的專業(yè)技術(shù)人員中抽取一個(gè)容量為的樣本,將該樣本看成一個(gè)總體,從中任取人,求至少有人的學(xué)歷為研究生的概率;
(2)在這個(gè)公司的專業(yè)技術(shù)人員中按年齡狀況用分層抽樣的方法抽取個(gè)人,其中歲以下人,歲以上人,再從這個(gè)人中隨機(jī)抽取出人,此人的年齡為歲以上的概率為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩點(diǎn),,動(dòng)點(diǎn)與兩點(diǎn)連線的斜率滿足.
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)是曲線與軸正半軸的交點(diǎn),曲線上是否存在兩點(diǎn),使得是以為直角頂點(diǎn)的等腰直角三角形?若存在,請說明有幾個(gè);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),曲線在點(diǎn)處的切線方程為.
(1)求的解析式;
(2)證明:曲線上任一點(diǎn)處的切線與直線和直線所圍成的三角形面積為定值,并求此定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了教職工的住房問題,計(jì)劃征用一塊土地蓋一幢總建筑面積為的宿舍樓(每層的建筑面積相同).已知土地的征用費(fèi)為元,土地的征用面積為第一層的倍,經(jīng)工程技術(shù)人員核算,第一層的建筑費(fèi)用相同都為400元,以后每增高一層,其建筑費(fèi)用就增加50元.試設(shè)計(jì)這幢宿舍樓的樓高層數(shù),使總費(fèi)用最少,并求出其最少費(fèi)用.(總費(fèi)用為建筑費(fèi)用和征地費(fèi)用之和).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果存在常數(shù),使得數(shù)列滿足:若是數(shù)列中的一項(xiàng),則也是數(shù)列 中的一項(xiàng),稱數(shù)列為“兌換數(shù)列”,常數(shù)是它的“兌換系數(shù)”.
(1)若數(shù)列:是“兌換系數(shù)”為的“兌換數(shù)列”,求和的值;
(2)已知有窮等差數(shù)列的項(xiàng)數(shù)是,所有項(xiàng)之和是,求證:數(shù)列是“兌換數(shù)列”,并用和表示它的“兌換系數(shù)”;
(3)對于一個(gè)不小于3項(xiàng),且各項(xiàng)皆為正整數(shù)的遞增數(shù)列,是否有可能它既是等比數(shù)列,又是“兌換數(shù)列”?給出你的結(jié)論,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com